Action potential (AP)-independent (miniature) neurotransmission occurs at all chemical synapses but remains poorly understood, particularly in pathologic contexts. Axonal endoplasmic reticulum (ER) Ca stores are thought to influence miniature neurotransmission, and aberrant ER Ca handling is implicated in progression of Huntington disease (HD). Here, we report elevated mEPSC frequencies in recordings from YAC128 mouse (HD-model) neurons (from cortical cultures and striatum-containing brain slices, both from male and female animals).
View Article and Find Full Text PDFHuntington disease (HD), a hereditary neurodegenerative disorder, manifests as progressively impaired movement and cognition. Although early abnormalities of neuronal activity in striatum are well established in HD models, there are fewer in vivo studies of the cortex. Here, we record local field potentials (LFPs) in YAC128 HD model mice versus wild-type mice.
View Article and Find Full Text PDFAxonal plasticity allows neurons to control their output, which critically determines the flow of information in the brain. Axon diameter can be regulated by activity, yet how morphological changes in an axon impact its function remains poorly understood. Axonal swellings have been found on Purkinje cell axons in the cerebellum both in healthy development and in neurodegenerative diseases, and computational models predicts that axonal swellings impair axonal function.
View Article and Find Full Text PDFHuntington disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the gene. The onset of symptoms is preceded by synaptic dysfunction. Homeostatic synaptic plasticity (HSP) refers to processes that maintain the stability of networks of neurons, thought to be required to enable new learning and cognitive flexibility.
View Article and Find Full Text PDFHuntington disease (HD) is an inherited neurodegenerative disorder caused by an expansion of the CAG repeat region in the first exon of the huntingtin gene. Neurodegeneration, which begins in the striatum and then spreads to other brain areas, is preceded by dysfunction in multiple aspects of neurotransmission across a variety of brain areas. This review will provide an overview of the neurochemical mediators and modulators of synaptic transmission that are disrupted in HD.
View Article and Find Full Text PDFHuntington's disease (HD) is an inherited neurodegenerative disease affecting predominantly striatum and cortex that results in motor and cognitive disorders. Before a motor phenotype, animal models of HD show aberrant cortical-striatal glutamate signaling. Here, we tested synaptic plasticity of cortical excitatory synapses onto striatal spiny projection neurons (SPNs) early in the YAC128 mouse model of HD.
View Article and Find Full Text PDFHuntington disease (HD) model mice with heterozygous knock-in (KI) of an expanded CAG tract in exon 1 of the mouse huntingtin (Htt) gene homolog genetically recapitulate the mutation that causes HD, and might be favoured for preclinical studies. However, historically these mice have failed to phenotypically recapitulate the human disease. Thus, homozygous KI mice, which lack wildtype Htt, and are much less relevant to human HD, have been used.
View Article and Find Full Text PDFHuntington's disease (HD) is a genetically inherited neurodegenerative disease caused by a mutation in the gene encoding the huntingtin protein. This mutation results in progressive cell death that is particularly striking in the striatum. Recent evidence indicates that early HD is initially a disease of the synapse, in which subtle alterations in synaptic neurotransmission, particularly at the cortico-striatal (C-S) synapse, can be detected well in advance of cell death.
View Article and Find Full Text PDFBackground: Huntington's disease (HD), caused by polyglutamine expansion in huntingtin (Htt), results in severe neurodegeneration in the striatum, and to a lesser extent, cortex and hippocampus. In contrast, non-expanded huntingtin (wildtype, wtHtt) enhances pro-survival trophic factor BDNF expression and protects striatal neurons from excitotoxicity, a mechanism thought to contribute to HD pathophysiology; however, it is unknown whether these effects of wtHtt extend to other brain areas.
Objective: Test wtHtt's role in pro-survival signaling and neuroprotection in striatum, cortex and hippocampus.