Publications by authors named "Amy Skibiel"

Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. Here, we assemble complete and gapless telomere to telomere (T2T) Y chromosomes for these species. We find that the pseudo-autosomal regions are similar in length, but the total chromosome size is substantially different, with the cattle Y more than twice the length of the sheep Y.

View Article and Find Full Text PDF

Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. We assembled complete and gapless telomere to telomere (T2T) Y chromosomes for these species. The pseudo-autosomal regions were similar in length, but the total chromosome size was substantially different, with the cattle Y more than twice the length of the sheep Y.

View Article and Find Full Text PDF

Lactation is energetically demanding for the dairy cow. Numerous morphological and metabolic changes orchestrated across different tissues in the body partition nutrients for milk synthesis. The liver is a key organ coordinating modifications in metabolism that increase substrate availability for the mammary gland.

View Article and Find Full Text PDF

Wildfires are a growing concern as large, catastrophic fires are becoming more commonplace. Wildfire smoke consists of fine particulate matter (PM2.5), which can cause immune responses and disease in humans.

View Article and Find Full Text PDF

The ability to provision offspring with milk is a significant adaptive feature of mammals that allows for considerable maternal regulation of offspring beyond gestation, as milk provides complete nutrition for developing neonates. For mothers, lactation is a period of marked increases in energetic and nutritive demands to support milk synthesis; because of this considerable increase in demand imposed on multiple physiological systems, lactation is particularly susceptible to the effects of chronic stress. Here, we present work that explores the impact of chronic stress during lactation on maternal lactation performance (i.

View Article and Find Full Text PDF

Wildfires are particularly prevalent in the Western United States, home to more than 2 million dairy cows that produce more than 25% of the nation's milk. Wildfires emit fine particulate matter (PM) in smoke, which is a known air toxin and is thought to contribute to morbidity in humans by inducing inflammation. The physiological responses of dairy cows to wildfire PM are unknown.

View Article and Find Full Text PDF

Exposure to heat stress during a cow's dry period disrupts mammary gland remodeling, impairing mammary function and milk production during the subsequent lactation. Yet, proteomic changes in the mammary gland underlying these effects are not yet known. We investigated alterations in the mammary proteome and phosphoproteome during lactation as a result of dry period heat stress using an isobaric tag for relative and absolute quantitation (iTRAQ)-based approach.

View Article and Find Full Text PDF

Dry period heat stress impairs subsequent milk production, but its impact on milk protein content and yield is inconsistent. We hypothesize that dairy cow exposure to dry period heat stress will reduce milk protein synthesis in the next lactation, potentially through modified amino acid (AA) transport and compromised mTOR signaling in the mammary gland. Cows were enrolled into heat-stressed (dry-HT, = 12) or cooled (dry-CL, = 12) treatments for a 46-day dry period then cooled after calving.

View Article and Find Full Text PDF

Lactation is physiologically demanding, requiring increased nutrient and energy use. Mammary and extramammary tissues undergo metabolic changes for lactation. Although it has long been recognized that mitochondria play a critical role in lactation, the mitochondrial adaptations for milk synthesis in supporting tissues, such as liver and skeletal muscle are relatively understudied.

View Article and Find Full Text PDF

Maternal exposure to stressors during lactation has previously been demonstrated to impact various aspects of milk synthesis and to have long-term physiological effects on offspring. Much of the current literature investigating the effects of stress during lactation has used acute stressors, and the studies investigating the effects of chronic stressors largely focus on neurological changes. Further, temporal variation in glucocorticoids across lactation in response to stressors has rarely been assessed.

View Article and Find Full Text PDF

Hormonal alterations occurring under late gestation heat stress may disturb mammary gland remodelling, resulting in a reduced milk yield during the subsequent lactation. We investigated the effects of an altered endocrine environment on mammary gene expression at different stages of the dry period. Mammary gland biopsies from in vivo-cooled (CL) or heat-stressed (HT) cows were collected at d 3 and 35 relative to dry-off and divided into explants.

View Article and Find Full Text PDF

Dry period heat stress impairs subsequent milk yield. Our objective was to evaluate the effect of heat stress or cooling during the early and late dry period on mammary gland gene expression and microstructure. Cows were dried off ∼45 d before expected parturition and randomly assigned to 1 of 2 treatments: heat stress (HT, n = 39) or cooling (CL, n = 39) during the first 21 d of the dry period.

View Article and Find Full Text PDF

The bovine dry period is a non-lactating period between consecutive lactations characterized by mammary gland involution and redevelopment phases to replace senescent mammary epithelial cells with active cells primed for the next lactation. Dairy cows exposed to heat stress during the dry period experience milk yield reductions between 3-7.5 kg/d in the next lactation, partially attributed to processes associated with mammary cell growth and turnover during the dry period.

View Article and Find Full Text PDF

Heat stress during late gestation adversely impacts the developing calf. Calves that experience heat stress are born at a lower bodyweight and those deficits persist at least until puberty. In utero heat stress reduces passive transfer and calf survival.

View Article and Find Full Text PDF

Cooling during the entire dry period abates the negative effects of heat stress postpartum, yet the temporal relationship of cooling (i.e., early or late dry period) to performance is unknown.

View Article and Find Full Text PDF

Earth's rising temperature has substantial repercussions for food-producing animals by increasing morbidity and mortality, diminishing reproductive potential, and reducing productivity. In the dairy industry this equates to massive losses in milk yield, which occur when cows are exposed to heat stress during lactation or during the non-lactating period between lactations (i.e.

View Article and Find Full Text PDF

The bovine dry period is a dynamic non-lactating phase where the mammary gland undergoes extensive cellular turnover. Utilizing RNA sequencing, we characterized novel genes and pathways involved in this process and determined the impact of dry period heat stress. Mammary tissue was collected before and during the dry period (-3, 3, 7, 14, and 25 days relative to dry-off [day 0]) from heat-stressed (HT, n = 6) or cooled (CL, n = 6) late-gestation Holstein cows.

View Article and Find Full Text PDF

Heat stress negatively affects cow performance, compromises immune function, and increases susceptibility to metabolic disorders, particularly during the dry period and as cows transition from gestation to lactation. Metabolic adaptations of the liver are critical for successful transition, yet it is unclear how heat stress affects metabolic pathways within the liver at the proteomic level. The objective of this study was to investigate the liver proteome of postpartum cows that were cooled or heat stressed during the dry period to gain insight into how protein expression is altered by prior heat stress and may contribute to performance and disease outcomes.

View Article and Find Full Text PDF

Heat stress during late gestation negatively affects the physiology, health, and productivity of dairy cows as well as the calves developing in utero. Providing cows with active cooling devices, such as fans and soakers, and supplementing cows with an immunomodulating feed additive, OmniGen-AF (OG; Phibro Animal Health Corporation), improves immune function and milk yield of cows. It is unknown if maternal supplementation of OG combined with active cooling during late gestation might benefit the developing calf as well.

View Article and Find Full Text PDF

The maternal environment exerts important influences on offspring mass/growth, metabolism, reproduction, neurobiology, immune function, and behavior among birds, insects, reptiles, fish, and mammals. For mammals, mother's milk is an important physiological pathway for nutrient transfer and glucocorticoid signaling that potentially influences offspring growth and behavioral phenotype. Glucocorticoids in mother's milk have been associated with offspring behavioral phenotype in several mammals, but studies have been handicapped by not simultaneously evaluating milk energy density and yield.

View Article and Find Full Text PDF

1. In mammals, nutrient allocation during lactation is a critical component of maternal care as milk intake promotes juvenile growth and survival, and hence maternal and offspring fitness. 2.

View Article and Find Full Text PDF

Enrichment can increase the complexity of the captive environment and possibly enhance captive animals' well-being by stimulating active behaviors and reducing stereotypical behaviors commonly seen in zoo felids. In this study, three different enrichment items were added to outdoor enclosures of felids at the Montgomery Zoo to test their effects on activity levels and stereotypic pacing. Bones, frozen fish, and spices (cinnamon, chili powder, and cumin) were presented over a 3-month period to six species of felids: cheetah, cougar, jaguar, lion, ocelot, and tiger.

View Article and Find Full Text PDF

Results of the study by Blackburn et al. (2004a) of avifauna on oceanic islands suggest that distance from the mainland and time since European colonization have major influences on species extinctions and that island area is a significant but secondary contributing factor. After augmenting the data of the study on geographical properties for some of the islands they examined, we used a causal analysis approach with structural equation modeling to reexamine their conclusions.

View Article and Find Full Text PDF