Purpose: Cisplatin contributes to acute kidney injury (AKI) and chronic kidney disease (CKD) that occurs with greater frequency and severity in older patients. Age-associated cisplatin sensitivity in human fibroblasts involves increased mitochondrial superoxide produced by older donor cells.
Experimental Design: Young and old C57BL/6 J murine models of cisplatin-induced AKI and CKD were treated with the SOD mimetic avasopasem manganese to investigate the potential antioxidant and anti-inflammatory effects.
Objectives: Adults born prematurely have an increased risk of early heart failure. The impact of prematurity on left and right ventricular function has been well documented, but little is known about the impact on the systemic vasculature. The goals of this study were to measure aortic stiffness and the blood pressure response to physiological stressors; in particular, normoxic and hypoxic exercise.
View Article and Find Full Text PDFBlunted nocturnal dipping in blood pressure (BP) is associated with increased cardiovascular disease (CVD) risk in middle-aged/older adults. The prevalence of blunted nocturnal BP dipping is higher in persons with obesity and diabetes, conditions that are also associated with elevated aortic stiffness and inflammation. Therefore, we hypothesized that elevated glycemia, inflammation and aortic stiffness would be inversely associated with the magnitude of nocturnal systolic BP dipping among middle-aged/older adults with obesity at high CVD risk.
View Article and Find Full Text PDFMitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo.
View Article and Find Full Text PDFWe tested the hypothesis that supplementation of nicotinamide mononucleotide (NMN), a key NAD(+) intermediate, increases arterial SIRT1 activity and reverses age-associated arterial dysfunction and oxidative stress. Old control mice (OC) had impaired carotid artery endothelium-dependent dilation (EDD) (60 ± 5% vs. 84 ± 2%), a measure of endothelial function, and nitric oxide (NO)-mediated EDD (37 ± 4% vs.
View Article and Find Full Text PDFInsufficient nitric oxide (NO) bioavailability plays an important role in endothelial dysfunction and arterial stiffening with aging. Supplementation with sodium nitrite, a precursor of NO, ameliorates age-related vascular endothelial dysfunction and arterial stiffness in mice, but effects on humans, including the metabolic pathways altered, are unknown. The purpose of this study was to determine the safety, feasibility, and efficacy of oral sodium nitrite supplementation for improving vascular function in middle-aged and older adults and to identify related circulating metabolites.
View Article and Find Full Text PDFAim: We tested the hypothesis that short-term oral sodium nitrite supplementation would improve vascular dysfunction in obese, diabetic mice.
Methods And Results: Vascular function was determined in control mice and in db/db mice receiving drinking water with or without sodium nitrite (50 mg/L) for 5 weeks. Nitrite supplementation increased plasma nitrite concentrations in db/db mice (0.
Aging is associated with motor declines that lead to functional limitations and disability, necessitating the development of therapies to slow or reverse these events. We tested the hypothesis that sodium nitrite supplementation attenuates declines in motor function in older C57BL/6 mice. Motor function was assessed using a battery of tests (grip strength, open-field distance, rota-rod endurance) in old animals (age 20-24 mo) at baseline and after 8 wk of sodium nitrite (old nitrite, n = 22, 50 mg/liter) or no treatment (old control, n = 40), and in young reference animals (3 mo, n = 87).
View Article and Find Full Text PDFReductions in arterial SIRT1 expression and activity with aging are linked to vascular endothelial dysfunction. We tested the hypothesis that the specific SIRT1 activator SRT1720 improves endothelial function [endothelium-dependent dilation (EDD)] in old mice. Young (4-9 mo) and old (29-32 mo) male B6D2F1 mice treated with SRT1720 (100 mg/kg body wt) or vehicle for 4 wk were studied with a group of young controls.
View Article and Find Full Text PDFAge-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown.
View Article and Find Full Text PDFAging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO.
View Article and Find Full Text PDFWe tested the hypothesis that superoxide signaling within aortic perivascular adipose tissue (PVAT) contributes to large elastic artery stiffening in old mice. Young (4-6 months), old (26-28 months), and old treated with 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide scavenger (1 mm in drinking water for 3 weeks), male C57BL6/N mice were studied. Compared with young, old had greater large artery stiffness assessed by aortic pulse wave velocity (aPWV, 436 ± 9 vs.
View Article and Find Full Text PDFExercise training ameliorates age-related impairments in endothelium-dependent vasodilation in skeletal muscle arterioles. Additionally, exercise training is associated with increased superoxide production. The purpose of this study was to determine the role of superoxide and superoxide-derived reactive oxygen species (ROS) signaling in mediating endothelium-dependent vasodilation of soleus muscle resistance arterioles from young and old, sedentary and exercise-trained rats.
View Article and Find Full Text PDFWe tested the hypothesis that curcumin supplementation would reverse arterial dysfunction and vascular oxidative stress with aging. Young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6/N mice were given normal or curcumin supplemented (0.2%) chow for 4 weeks (n=5-10/group/measure).
View Article and Find Full Text PDFBackground: Aging kidneys exhibit slowly developing injury and women are usually protected compared with men, in association with maintained renal nitric oxide.
Objectives: Our purpose was to test 2 hypotheses: (1) that aging intact Fischer-344 (F344) female rats exhibit less glomerular damage than similarly aged males, and (2) that loss of female ovarian hormones would lead to greater structural injury and dysregulation of the nitric oxide synthase (NOS) system in aging F344 rat kidneys.
Methods: We compared renal injury in F344 rats in intact, ovariectomized, and ovariectomized with estrogen replaced young (6 month) and old (24 month) female rats with young and old intact male rats and measured renal protein abundance of NOS isoforms and oxidative stress.
We tested the hypothesis that sodium nitrite treatment reverses large elastic artery stiffening in old mice via reductions in collagen I, increases in elastin and/or decreases in advanced glycation end products (AGEs) mediated by reduced oxidative stress. Aortic pulse wave velocity (aPWV), a measure of large elastic artery stiffness, was greater in old (26-28months) compared with young (4-6months) control animals (520±9 vs. 405±6cm/s, p<0.
View Article and Find Full Text PDFAgeing causes arterial endothelial dysfunction that increases the risk of cardiovascular diseases (CVD), but the underlying mechanisms are incompletely understood. The aim of the present study was to determine the role of autophagy, the cellular process of recycling damaged biomolecules, in endothelial dysfunction with ageing. In older humans, expression of autophagy markers in arterial endothelial cells was impaired by ∼50% (P <0.
View Article and Find Full Text PDFTo test the hypothesis that the antioxidant enzyme superoxide dismutase (SOD) mimetic TEMPOL improves arterial aging, young (Y, 4-6 months) and old (O, 26-28 months) male C57BL6 mice received regular or TEMPOL-supplemented (1mM) drinking water for 3 weeks (n = 8 per group). Aortic superoxide was 65% greater in O (P < 0.05 vs.
View Article and Find Full Text PDFThe ageing kidney exhibits slowly developing chronic kidney disease (CKD) and is associated with nitric oxide (NO) deficiency and increased oxidative stress. The impact of exercise on the ageing kidney is not well understood. Here, we determined whether 12 weeks of treadmill exercise can influence age-dependent CKD in old (22-24 months) Fisher 344 (F344) male rats by comparing sedentary (SED) and exercise (EX) trained rats; young (3 months) rats were also studied.
View Article and Find Full Text PDFWe tested the hypothesis that short-term nitrite therapy reverses vascular endothelial dysfunction and large elastic artery stiffening with aging, and reduces arterial oxidative stress and inflammation. Nitrite concentrations were lower (P < 0.05) in arteries, heart, and plasma of old (26-28 month) male C57BL6 control mice, and 3 weeks of sodium nitrite (50 mg L(-1) in drinking water) restored nitrite levels to or above young (4-6 month) controls.
View Article and Find Full Text PDFReduced availability of tetrahydrobiopterin (BH(4)) contributes to the age-related decline of nitric oxide (NO)-mediated vasodilatation of soleus muscle arterioles. Depending on availability of substrate and/or necessary co-factors, endothelial nitric oxide synthase (eNOS) can generate NO and/or superoxide (O(2)(-)). We evaluated the effects of age and chronic exercise on flow-induced vasodilatation and levels of NO and O(2)(-) in soleus muscle arterioles.
View Article and Find Full Text PDF