Epilepsy is a complex neurological condition characterized by repeated spontaneous seizures and can be induced by initiating seizures known as status epilepticus (SE). Elaborating the critical molecular mechanisms following SE are central to understanding the establishment of chronic seizures. Here, we identify a transient program of molecular and metabolic signaling in the early epileptogenic period, centered on day five following SE in the pre-clinical kainate or pilocarpine models of temporal lobe epilepsy.
View Article and Find Full Text PDFInflammatory Breast Cancer (IBC) is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG) were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival.
View Article and Find Full Text PDFThe activity of DNA methyltransferase 1 (DNMT1) is associated with diverse biological activities, including cell proliferation, senescence, and cancer development. In this study, we demonstrated that the HMG box-containing protein 1 (HBP1) transcription factor is a new repressor of DNMT1 in a complex mechanism during senescence. The DNMT1 gene contains an HBP1-binding site at bp -115 to -134 from the transcriptional start site.
View Article and Find Full Text PDFObjectives: Overexpression of the epidermal growth factor (EGF) receptor (EGFR) gene in the squamous cell carcinomas of the head and neck (SCCHN) is often associated with inauspicious prognosis and poor survival. N-acetylcysteine (NAC), a compound from some vegetables and allium species, appears anti-tumorigenesis, but the underlying mechanism is unclear. The objective of this study is to investigate the role of NAC in EGFR-overexpressing oral cancer.
View Article and Find Full Text PDFInvasive breast cancer has a high risk of recurrence to incurable disease and needs improved prognostic and therapeutic tools. Our work combines clinical and molecular analyses to show that the transcriptional repressor HBP1 may be a new target for invasive breast cancer. Previous work indicated that HBP1 regulated proliferation and senescence and inhibited Wnt signaling.
View Article and Find Full Text PDFGreen tea has been reported as potential dietary protection against numerous cancers and has been shown to have activity in bladder tumor inhibition in different animal models. The goal of this study was to examine the effects of (-)-epigallocatechin gallate (EGCG-the major phytochemical in green tea) on growth inhibition and behavior of human bladder carcinoma cells and to identify the altered signaling pathway(s) underlying the response to EGCG exposure. EGCG inhibited the in vitro growth of invasive bladder carcinoma cells with an IC(50) range of 70-87 microM.
View Article and Find Full Text PDFOncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Previous work shows that RAS and p38 MAPK participate in premature senescence, but transcriptional effectors have not been identified. Here, we demonstrate that the HBP1 transcriptional repressor participates in RAS- and p38 MAPK-induced premature senescence.
View Article and Find Full Text PDFAims: The aim of this study is to determine the effectiveness of a diabetes nurse clinic intervention in controlling the poor glycaemia of older patients with type 2 diabetes.
Research Method: This is a quasi-experimental design with pre- and follow-up tests. The study was conducted in a regional acute hospital in Hong Kong.
Genetic and biochemical de-regulation of Wnt signaling is correlated with breast and other cancers. Our goal was to identify compounds that block Wnt signaling as a first step toward investigating new strategies for suppression of invasive and other breast cancers. In a limited phytonutrient screen, EGCG ((-)-epigallocatechin 3-gallate), the major phytochemical in green tea, emerged as an intriguing candidate.
View Article and Find Full Text PDFMechanisms that inhibit cell cycle progression and establish growth arrest are fundamental to tumor suppression and to normal cell differentiation. A complete understanding of these mechanisms should provide new diagnostic and therapeutic targets for future clinical applications related to cancer-specific pathways. This review will focus on the HMG-box protein 1 (HBP1) transcriptional repressor and its roles in cell cycle progression and tumor suppression.
View Article and Find Full Text PDFSeveral studies have linked the production of reactive oxygen species (ROS) by the NADPH oxidase to cellular growth control. In many cases, activation of the NADPH oxidase and subsequent ROS generation is required for growth factor signaling and mitogenesis in nonimmune cells. In this study, we demonstrate that the transcriptional repressor HBP1 (HMG box-containing protein 1) regulates the gene for the p47phox regulatory subunit of the NADPH oxidase.
View Article and Find Full Text PDFThe p38 mitogen-activated protein (MAP) kinase signaling pathway participates in both apoptosis and G1 arrest. In contrast to the established role in apoptosis, the documented induction of G1 arrest by activation of the p38 MAP kinase pathway has attracted recent attention with reports of substrates that are linked to cell cycle regulation. Here, we identify the high-mobility group box protein HBP1 transcriptional repressor as a new substrate for p38 MAP kinase.
View Article and Find Full Text PDFThe nitrone spin trap PBN has been shown to protect neuronal cells from reactive oxygen species both in culture and in vivo. As an approach to understanding the molecular mechanisms by which PBN may function to protect cells, we examined whether PBN alters the cellular response to reactive oxygen species. H(2)O(2) stimulation of PC-12 cells results in weak activation of both the ERK and JNK signal transduction pathways.
View Article and Find Full Text PDF