Publications by authors named "Amy S Turmelle"

Influenza A virus reservoirs in animals have provided novel genetic elements leading to the emergence of global pandemics in humans. Most influenza A viruses circulate in waterfowl, but those that infect mammalian hosts are thought to pose the greatest risk for zoonotic spread to humans and the generation of pandemic or panzootic viruses. We have identified an influenza A virus from little yellow-shouldered bats captured at two locations in Guatemala.

View Article and Find Full Text PDF

In this study we attempted to identify whether Commerson's leaf-nosed bat (Hipposideros commersoni) is the reservoir of Shimoni bat virus (SHIBV), which was isolated from a bat of this species in 2009. An alternative explanation is that the isolation of SHIBV from H. commersoni was a result of spill-over infection from other species, particularly from the Egyptian fruit bats (Rousettus aegyptiacus), which frequently sympatrically roost with H.

View Article and Find Full Text PDF

The migratory tree-roosting hoary bat (Lasiurus cinereus) and silver-haired bat (Lasionycteris noctivagans) are among the bat species with the highest reported prevalence of rabies in North America. However, bats submitted for rabies testing typically have been those that have come in contact with humans or pets. Given the roosting ecology of L.

View Article and Find Full Text PDF

Since the late 1980s, Brazilian free-tailed bats (Tadarida brasiliensis) have increasingly used bridges as roosts in the southern United States. We examined differences in blood cortisol levels, body condition, and parasite load, as measures of physiological stress in bats roosting in bridges and bats roosting in caves. We collected data during three periods, coinciding with female phases of reproduction.

View Article and Find Full Text PDF

One of the most widely distributed bats in the New World, the big brown bat (Eptesicus fuscus) exhibits well-documented geographic variation in morphology and life history traits, suggesting the potential for significant phylogeographic structure as well as adaptive differentiation among populations. In a pattern broadly consistent with morphologically defined subspecies, we found deeply divergent mitochondrial lineages restricted to different geographic regions. In contrast, sequence data from two nuclear loci suggest a general lack of regional genetic structure except for peripheral populations in the Caribbean and Mexico/South America.

View Article and Find Full Text PDF

A captive colony of Brazilian free-tailed bats (Tadarida brasiliensis) was vaccinated with a commercial monovalent inactivated rabies virus (RABV) vaccine (RABVAC 1). Baseline rabies virus neutralizing antibodies (VNA) and the response to vaccination were measured in 50 bats. Rabies VNA was detected in the plasma of 64% (27/42) of bats that had been vaccinated 1 yr prior, but only 19% (8/42) had levels considered adequate.

View Article and Find Full Text PDF

For RNA viruses, rapid viral evolution and the biological similarity of closely related host species have been proposed as key determinants of the occurrence and long-term outcome of cross-species transmission. Using a data set of hundreds of rabies viruses sampled from 23 North American bat species, we present a general framework to quantify per capita rates of cross-species transmission and reconstruct historical patterns of viral establishment in new host species using molecular sequence data. These estimates demonstrate diminishing frequencies of both cross-species transmission and host shifts with increasing phylogenetic distance between bat species.

View Article and Find Full Text PDF

Bats are known reservoirs for numerous emerging infectious diseases, occupy unique ecological niches, and occur globally except for Antarctica. Given their impact on human and agricultural health, it is critical to understand the mechanisms underlying immunocompetence in this reservoir host. To date, few studies have examined immune function in the Order Chiroptera, particularly among natural colonies of bats.

View Article and Find Full Text PDF

Historic and contemporary host ecology and evolutionary dynamics have profound impacts on viral diversity, virulence, and associated disease emergence. Bats have been recognized as reservoirs for several emerging viral pathogens, and are unique among mammals in their vagility, potential for long-distance dispersal, and often very large, colonial populations. We investigate the relative influences of host ecology and population genetic structure for predictions of viral richness in relevant reservoir species.

View Article and Find Full Text PDF

Previous studies have investigated rabies virus (RABV) epizootiology in Brazilian free-tailed bats (Tadarida brasiliensis) in natural cave roosts. However, little is known about geographic variation in RABV exposure, or if the use of man-made roosts by this species affects enzootic RABV infection dynamics within colonies. We sampled rabies viral neutralizing antibodies in bats at three bridge and three cave roosts at multiple time points during the reproductive season to investigate temporal and roost variation in RABV exposure.

View Article and Find Full Text PDF

Bats have recently been implicated as reservoirs of important emerging diseases. However, few studies have examined immune responses in bats, and even fewer have evaluated these responses in an ecological context. We examined aspects of both innate and adaptive immune response in adult female Brazilian free-tailed bats (Tadarida brasiliensis) at four maternity roosts (two natural caves and two human-made bridges) in south-central Texas.

View Article and Find Full Text PDF

A captive colony of adult Big Brown Bats (Eptesicus fuscus) was experimentally infected with a rabies virus (RABV) variant isolated from the salivary glands of a naturally infected Big Brown Bat and passaged once through murine neuroblastoma cell culture. Bats were divided into 11 groups, which were composed of one to three noninfected and one to three infected individuals each. Twenty of 38 animals were infected intramuscularly into both left and right masseter muscles; they received a total of 10(3.

View Article and Find Full Text PDF

Bats are natural reservoirs of rabies. We address the maintenance of the disease in bat colonies by developing individual and population models that generate indicators of risk of rabies to bats, that provide dynamic estimates of effects of rabies on population densities, and that suggest consequences of viral exposures and infections in bats relative to physiological and ecological characteristics of bats in different habitats. We present individual models (within host) for the immune responses to a rabies virus challenge, an immunotypic disease model that describes the evolution of the disease and a disease demographics model, which is structured by immunotypic response governed by immune system efficiency.

View Article and Find Full Text PDF