Publications by authors named "Amy S Major"

Background: Regulatory T cells (T) are protective in atherosclerosis but reduced during disease progression due to cell death and loss of stability. However, the mechanisms of T dysfunction remain unknown. Oxidized phospholipids are abundant in atherosclerosis and can activate innate immune cells, but little is known regarding their impact on T cells.

View Article and Find Full Text PDF

T cells in systemic lupus erythematosus (SLE) exhibit multiple metabolic abnormalities. Excess iron can impair mitochondria and may contribute to SLE. To gain insights into this potential role of iron in SLE, we performed a CRISPR screen of iron handling genes on T cells.

View Article and Find Full Text PDF

Autoimmune disease has presented an insurmountable barrier to restoration of durable immune tolerance. Previous studies indicate that chronic therapy with metabolic inhibitors can reduce autoimmune inflammation, but it remains unknown whether acute metabolic modulation enables permanent immune tolerance to be established. In an animal model of lupus, we determined that targeting glucose metabolism with 2-deoxyglucose (2DG) and mitochondrial metabolism with metformin enables endogenous immune tolerance mechanisms to respond to tolerance induction.

View Article and Find Full Text PDF

A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates choline catabolism by altering intestinal epithelial physiology.

View Article and Find Full Text PDF

Purpose Of Review: Accelerated atherosclerosis is a significant comorbidity and the leading cause of death for patients with systemic lupus erythematosus (SLE). It is now apparent that SLE-accelerated atherosclerosis is not driven solely by traditional cardiovascular risk factors, adding complexity to disease characterization and mechanistic understanding. In this review, we will summarize new insights into SLE-accelerated atherosclerosis evaluation, treatment, and mechanism.

View Article and Find Full Text PDF

Background: Helper T cell activity is dysregulated in a number of diseases including those associated with rheumatic autoimmunity. Treatment options are limited and usually consist of systemic immune suppression, resulting in undesirable consequences from compromised immunity. Hedgehog (Hh) signaling has been implicated in the activation of T cells and the formation of the immune synapse, but remains understudied in the context of autoimmunity.

View Article and Find Full Text PDF

Background And Aims: Circulating levels of oxidized lipoprotein (oxLDL) correlate with myocardial infarction risk and atherosclerosis severity. Our previous study demonstrates that oxLDL immune complexes (oxLDL-ICs) can signal through FcγRs on bone marrow-derived dendritic cells (BMDCs) and enhance their activation and inflammatory cytokine secretion. While global FcγR studies have shown that activating FcγRs are proatherogenic, the role of the inhibitory FcγRIIb is unclear.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the number one cause of death in the United States and worldwide. The most common cause of cardiovascular disease is atherosclerosis, or formation of fatty plaques in the arteries. Low-density lipoprotein (LDL), termed "bad cholesterol", is a large molecule comprised of many proteins as well as lipids including cholesterol, phospholipids, and triglycerides.

View Article and Find Full Text PDF

All immune cells depend on specific and efficient metabolic pathways to mount an appropriate response. Over the past decade, the field of immunometabolism has expanded our understanding of the various means by which cells modulate metabolism to achieve the effector functions necessary to fight infection or maintain homeostasis. Harnessing these metabolic pathways to manipulate inappropriate immune responses as a therapeutic strategy in cancer and autoimmunity has received increasing scrutiny by the scientific community.

View Article and Find Full Text PDF

Oxidized low-density lipoprotein (oxLDL) is known to activate inflammatory responses in a variety of cells, especially macrophages and dendritic cells. Interestingly, much of the oxLDL in circulation is complexed to Abs, and these resulting immune complexes (ICs) are a prominent feature of chronic inflammatory disease, such as atherosclerosis, type-2 diabetes, systemic lupus erythematosus, and rheumatoid arthritis. Levels of oxLDL ICs often correlate with disease severity, and studies demonstrated that oxLDL ICs elicit potent inflammatory responses in macrophages.

View Article and Find Full Text PDF

Objective: Antiatherosclerotic effects of tumor necrosis factor-α (TNF-α) blockade in patients with systemic inflammatory states are not conclusively demonstrated, which suggests that effects depend on the cause of inflammation. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) and apoE contribute to inflammation through different pathways. We studied the antiatherosclerosis effects of TNF-α blockade in hyperlipidemic mice lacking either LRP1 (MΦLRP1(-/-)) or apoE from macrophages.

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes atherosclerosis by increasing low-density lipoprotein (LDL) cholesterol levels through degradation of hepatic LDL receptor (LDLR). Studies have described the systemic effects of PCSK9 on atherosclerosis, but whether PCSK9 has local and direct effects on the plaque is unknown. To study the local effect of human PCSK9 (hPCSK9) on atherosclerotic lesion composition, independently of changes in serum cholesterol levels, we generated chimeric mice expressing hPCSK9 exclusively from macrophages, using marrow from hPCSK9 transgenic (hPCSK9tg) mice transplanted into apoE(-/-) and LDLR(-/-) mice, which were then placed on a high-fat diet (HFD) for 8 weeks.

View Article and Find Full Text PDF

Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr) on antigen presenting cells (APCs) has been shown to enhance invariant natural killer T (iNKT) cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP), plays a role in iNKT cell activation.

View Article and Find Full Text PDF

The field of immunometabolism is burgeoning, with hundreds of papers published on the topic each year. Our understanding of the contribution of immune cells to metabolic regulation has expanded from a simple idea of innate immune cells, such as macrophages, altering adipose tissue function in obesity, to an awareness of the complex role of adaptive immunity in many different organ systems. Recent findings have clearly demonstrated the presence of adaptive lymphocytes, such as T and B cells, in adipose tissue.

View Article and Find Full Text PDF

Objective: Accelerated atherosclerosis is a major source of morbidity in systemic lupus erythematosus (SLE). However, the cause of SLE-accelerated atherosclerosis remains unclear.

Methods: CD4(+) T cells from C57/Bl/6 (B6) or SLE-susceptible B6.

View Article and Find Full Text PDF

Objective: MCPIP1 is a newly identified protein that profoundly impacts immunity and inflammation. We aim to test if MCPIP1 deficiency in hematopoietic cells results in systemic inflammation and accelerates atherogenesis in mice.

Approach And Results: After lethally irradiated, LDLR(-/-) mice were transplanted with bone marrow cells from either wild-type or MCPIP1(-/-) mice.

View Article and Find Full Text PDF

Background: Elevated cholesterol and triglycerides in blood lead to atherosclerosis and fatty liver, contributing to rising cardiovascular and hepatobiliary morbidity and mortality worldwide.

Methods And Results: A cell-penetrating nuclear transport modifier (NTM) reduced hyperlipidemia, atherosclerosis, and fatty liver in low-density lipoprotein receptor-deficient mice fed a Western diet. NTM treatment led to lower cholesterol and triglyceride levels in blood compared with control animals (36% and 53%, respectively; P<0.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies against self-antigens such as double-stranded DNA and phospholipids. Classical comorbidities of SLE include glomerulonephritis, infection, cardiovascular disease, arthritis, skin disorders, and neurological disease. In addition to these classical comorbidities, there is emerging evidence that SLE patients are at higher risk of developing insulin resistance and other components of the metabolic syndrome.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease characterized by increased serum autoantibody levels and tissue damage. With improved diagnosis and more effective treatment of the resultant kidney disease, accelerated atherosclerosis has become a major cause of morbidity in patients suffering from SLE. Although the exact mechanisms for SLE-accelerated atherosclerosis are unknown, multiple factors have been established as potential players in this process.

View Article and Find Full Text PDF

Rationale: Recent clinical and preclinical studies have demonstrated that systemic lupus erythematosus (SLE) is associated with an increased risk for cardiovascular disease (CVD). However, unlike in the general population, little is known regarding the efficacy of atheroprotective interventions in patients with SLE. The current study aims to determine the benefit of lymphocyte inhibition on reducing the atherosclerotic burden in SLE-susceptible LDLr-deficient mice.

View Article and Find Full Text PDF

The mechanisms for increased risk of chronic kidney disease (CKD) in obesity remain unclear. The renin-angiotensin system is implicated in the pathogenesis of both adiposity and CKD. We investigated whether the angiotensin type 1 (AT(1)) receptor, composed of dominant AT(1a) and less expressed AT(1b) in wild-type (WT) mice, modulates development and progression of kidney injury in a high-fat diet (HFD)-induced obesity model.

View Article and Find Full Text PDF