Publications by authors named "Amy S Carlos"

Osteoporosis, the most common skeletal disorder, is characterized by low bone mineral density (BMD) and an increased risk of fragility fractures. BMD is the best clinical predictor of future osteoporotic fracture risk, but is a complex trait controlled by multiple environmental and genetic determinants with individually modest effects. Quantitative trait locus (QTL) mapping is a powerful method for identifying chromosomal regions encompassing genes involved in shaping complex phenotypes, such as BMD.

View Article and Find Full Text PDF

Alkaline phosphatase (ALP) plays an essential role in the regulation of tissue mineralization, and its activity is highly heritable. Guided by genetic associations discovered in a murine model, we hypothesized a role for rare coding variants in determining serum ALP level and bone mineral density (BMD) in humans. We sequenced the coding regions of the ALP gene (ALPL) in men with low and normal serum ALP activity levels.

View Article and Find Full Text PDF

The development of osteoporosis involves the interaction of multiple environmental and genetic factors. Through combined genetic and genomic approaches, we identified the lipoxygenase gene Alox15 as a negative regulator of peak bone mineral density in mice. Crossbreeding experiments with Alox15 knockout mice confirmed that 12/15-lipoxygenase plays a role in skeletal development.

View Article and Find Full Text PDF

Size and shape are critical determinants of the mechanical properties of skeletal elements and can be anticipated to be highly heritable. Moreover, the genes responsible may be independent of those that regulate bone mineral density (BMD). To begin to identify the heritable determinants of skeletal geometry, we have examined femoral cross-sectional area (FCSA) in male and female mice from two inbred strains of mice with divergent FCSA (C57BL/6 [B6] and DBA/2 [D2]), a large genetically heterogeneous population (n = 964) of B6D2F2 mice and 18 BXD recombinant inbred (RI) strains derived from their F2 cross.

View Article and Find Full Text PDF