The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools.
View Article and Find Full Text PDFThe microfabrication of microfluidic control systems and the development of increasingly sensitive molecular amplification tools have enabled the miniaturization of single cells analytical platforms. Only recently has the throughput of these platforms increased to a level at which populations can be screened at the single cell level. Techniques based upon both active and passive manipulation are now capable of discriminating between single cell phenotypes for sorting, diagnostic or prognostic applications in a variety of clinical scenarios.
View Article and Find Full Text PDFMicrofluidic inertial focusing reliably and passively aligns small particles and cells through a combination of competing inertial fluid forces. The equilibrium behavior of inertially focused particles in straight channels has been extensively characterized and has been shown to be a strong function of channel size, geometry and particle size. We demonstrate that channels of varying geometry may be combined to produce a staged device capable of high throughput particle and cell concentration and efficient single pass complex fluid enrichment.
View Article and Find Full Text PDFA thermal unfolding study of the 45-residue α-helical domain UBA(2) using circular dichroism is presented. The protein is highly thermostable and exhibits a clear cold unfolding transition with the onset near 290 K without denaturant. Cold denaturation in proteins is rarely observed in general and is quite unique among small helical protein domains.
View Article and Find Full Text PDF