Ebolaviruses cause severe hemorrhagic fever. Central to the Ebola life cycle is the matrix protein VP40, which oligomerizes and drives viral budding. Here we present the crystal structure of the Sudan virus (SUDV) matrix protein.
View Article and Find Full Text PDFThe increasing dissemination of carbapenemases in Gram-negative bacteria has threatened the clinical usefulness of the β-lactam class of antimicrobials. A program was initiated to discover a new series of serine β-lactamase inhibitors containing a boronic acid pharmacophore, with the goal of finding a potent inhibitor of serine carbapenemase enzymes that are currently compromising the utility of the carbapenem class of antibacterials. Potential lead structures were screened in silico by modeling into the active sites of key serine β-lactamases.
View Article and Find Full Text PDFInfluenza A viruses cause the respiratory illness influenza, which can be mild to fatal depending on the strain and host immune response. The flu polymerase acidic (PA), polymerase basic 1 (PB1), and polymerase basic 2 (PB2) proteins comprise the RNA-dependent RNA polymerase complex responsible for viral genome replication. The first crystal structures of the C-terminal domain of PA (PA-CTD) in the absence of PB1-derived peptides show a number of structural changes relative to the previously reported PB1-peptide bound structures.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
April 2014
The ebolaviruses can cause severe hemorrhagic fever. Essential to the ebolavirus life cycle is the protein VP30, which serves as a transcriptional cofactor. Here, the crystal structure of the C-terminal, NP-binding domain of VP30 from Reston ebolavirus is presented.
View Article and Find Full Text PDFMacrophage infectivity potentiators (Mips) are immunophilin proteins and essential virulence factors for a range of pathogenic organisms. We applied a structural biology approach to characterize a Mip from Burkholderia pseudomallei (BpML1), the causative agent of melioidosis. Crystal structure and nuclear magnetic resonance analyses of BpML1 in complex with known macrocyclics and other derivatives led to the identification of a key chemical scaffold.
View Article and Find Full Text PDFPandemic outbreaks of highly virulent influenza strains can cause widespread morbidity and mortality in human populations worldwide. In the United States alone, an average of 41,400 deaths and 1.86 million hospitalizations are caused by influenza virus infection each year (1).
View Article and Find Full Text PDFPhages play critical roles in the survival and pathogenicity of their hosts, via lysogenic conversion factors, and in nutrient redistribution, via cell lysis. Analyses of phage- and viral-encoded genes in environmental samples provide insights into the physiological impact of viruses on microbial communities and human health. However, phage ORFs are extremely diverse of which over 70% of them are dissimilar to any genes with annotated functions in GenBank.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
September 2011
Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
September 2011
The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
September 2011
Any structural genomics endeavor, particularly ambitious ones such as the NIAID-funded Seattle Structural Genomics Center for Infectious Disease (SSGCID) and Center for Structural Genomics of Infectious Disease (CSGID), face technical challenges at all points of the production pipeline. One salvage strategy employed by SSGCID is combined gene engineering and structure-guided construct design to overcome challenges at the levels of protein expression and protein crystallization. Multiple constructs of each target are cloned in parallel using Polymerase Incomplete Primer Extension cloning and small-scale expressions of these are rapidly analyzed by capillary electrophoresis.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
September 2011
The structural genomics effort at the Seattle Structural Genomics Center for Infectious Disease (SSGCID) requires the manipulation of large numbers of amino-acid sequences and the underlying DNA sequences which are to be cloned into expression vectors. To improve efficiency in high-throughput protein structure determination, a database software package, Gene Composer, has been developed which facilitates the information-rich design of protein constructs and their underlying gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bioinformatics steps used in modern structure-guided protein engineering and synthetic gene engineering.
View Article and Find Full Text PDFTwo amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals.
View Article and Find Full Text PDFBackground: With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript.
Results: In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer.
Background: To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering.
Results: An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views.
Flp provides a unique opportunity to apply the tools of chemical biology to phosphoryl transfer reactions. Flp and other tyrosine recombinases catalyze site-specific DNA rearrangements via a phosphotyrosine intermediate. Unlike most related enzymes, Flp's nucleophilic tyrosine derives from a different protomer than the remainder of its active site.
View Article and Find Full Text PDFDeinococcus radiodurans RNA ligase (DraRnl) is a template-directed ligase that seals nicked duplexes in which the 3'-OH strand is RNA. DraRnl is a 342 amino acid polypeptide composed of a C-terminal adenylyltransferase domain fused to a distinctive 126 amino acid N-terminal module (a putative OB-fold). An alanine scan of the C domain identified 9 amino acids essential for nick ligation, which are located within nucleotidyltransferase motifs I, Ia, III, IIIa, IV and V.
View Article and Find Full Text PDFMethods Enzymol
August 2006
Tyrosyl-DNA phosphodiesterase (Tdp1) hydrolyzes 3'-phosphotyrosyl bonds in vitro. Because topoisomerase I, a type IB topoisomerase, is the only enzyme known to form 3'-phosphotyrosine bonds in eukaryotic cells, it was proposed that Tdp1 is involved in the repair of dead-end topoisomerase I-DNA covalent complexes that may form in vivo. It has also been proposed that Tdp1 may represent a novel anticancer target since known anticancer agents (e.
View Article and Find Full Text PDFTyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and tyrosine in vitro. Tdp1 is involved in the repair of DNA lesions created by topoisomerase I, although the in vivo substrate is not known. Here we study the kinetic and binding properties of human Tdp1 (hTdp1) to identify appropriate 3'-phosphotyrosyl DNA substrates.
View Article and Find Full Text PDFIn this study, we show that rodent albumin is expressed by and cell surface localized on at least some murine tumor cells. We have been able to purify this tumor-expressed albumin from in vivo grown tumor masses. The tumor-expressed albumin, unlike normal serum albumin purified from blood, is capable of inhibiting T-cell activation, proliferation, and function in both in vitro and in vivo settings.
View Article and Find Full Text PDFNucleic Acids Res
September 2004
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that acts upon protein-DNA covalent complexes. Tdp1 hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and free tyrosine in vitro. Mutations in Tdp1 have been linked to patients with spinocerebellar ataxia, and over-expression of Tdp1 results in resistance to known anti-cancer compounds.
View Article and Find Full Text PDFTyrosyl-DNA phosphodiesterase I (Tdp1) is involved in the repair of DNA lesions created by topoisomerase I in vivo. Tdp1 is a member of the phospholipase D (PLD) superfamily of enzymes and hydrolyzes 3'-phosphotyrosyl bonds to generate 3'-phosphate DNA and free tyrosine in vitro. Here, we use synthetic 3'-(4-nitro)phenyl, 3'-(4-methyl)phenyl, and 3'-tyrosine phosphate oligonucleotides to study human Tdp1.
View Article and Find Full Text PDF