The excellent intrinsic properties of aligned nanofibers, such as carbon nanotubes (CNTs), and their ability to be easily formed into multifunctional 3D architectures motivate their use for a variety of commercial applications, such as batteries, chemical sensors for environmental monitoring, and energy harvesting devices. While controlling nanofiber adhesion to the growth substrate is essential for bulk-scale manufacturing and device performance, experimental approaches and models to date have not addressed tuning the CNT array-substrate adhesion strength with thermal processing conditions. In this work, facile "one-pot" thermal postgrowth processing (at temperatures = 700-950 °C) is used to study CNT-substrate pull-off strength for millimeter-tall aligned CNT arrays.
View Article and Find Full Text PDFThe advantageous intrinsic and scale-dependent properties of aligned nanofibers (NFs) and their assembly into 3D architectures motivate their use as dry adhesives and shape-engineerable materials. While controlling NF-substrate adhesion is critical for scaled manufacturing and application-specific performance, current understanding of how this property evolves with processing conditions is limited. In this report, we introduce substrate adhesion predictive capabilities by using an exemplary array of NFs, aligned carbon nanotubes (CNTs), studied as a function of their processing.
View Article and Find Full Text PDF