Background: Individuals with unilateral transtibial amputations (ITTAs) are asymmetrical in quadriceps strength. It is unknown if this is associated with gait performance characteristics such as walking speed and limb symmetry.
Research Question: Are quadriceps strength asymmetries related to walking speed and/ or gait asymmetries in ITTAs?
Methods: Knee-extensor isometric maximum voluntary torque (MVT) and rate of torque development (RTD) were measured in eight ITTAs.
Background: Decreased mechanical work done by the trailing limb when descending a single-step could affect load development and increase injury risk on the leading limb. This study assessed the effect of trailing limb mechanics on the development of lead limb load during a step descent by examining individuals with unilateral transtibial amputations who are known to exhibit reduced work in the prosthetic limb.
Methods: Eight amputees and 10 able-bodied controls walked 5 m along the length of a raised platform, descended a single-step of 14 cm height, and continued walking.
Background: When stepping down from a raised surface, either a toe or heel contact strategy is performed. Increased vertical momentum is likely to be experienced during a step descent, yet the extent to which these descent strategies influence the development of load at the ground and knee has not been examined.
Research Question: Does descent strategy influence ground and knee joint loading? Does the contribution from leading and trailing limb joint mechanics differ between descent strategies?
Methods: Twenty-two healthy male participants (age: 34.
Individuals with unilateral transtibial amputations experience greater work demand and loading on the intact limb compared with the prosthetic limb, placing this limb at a greater risk of knee joint degenerative conditions. It is possible that increased loading on the intact side may occur due to strength deficits and joint absorption mechanics. This study investigated the intact limb mechanics utilized to attenuate load, independent of prosthetic limb contributions and requirements for forward progression, which could provide an indication of deficiencies in the intact limb.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? The effects of long-term muscle disuse on neuromuscular function are unclear because disuse studies are typically short term. In this study, we used a new model (unilateral transtibial amputees) to investigate the effects of long-term disuse on quadriceps neuromuscular function. What is the main finding and its importance? Kinetic analysis (knee-extension moments during gait) indicated habitual disuse of the amputated limb quadriceps, accompanied by lower quadriceps muscle strength (60-76%) and neural activation (32-44%), slower contractile properties and altered muscle architecture in the amputated limb, which could not be predicted from short-term disuse studies.
View Article and Find Full Text PDF