Publications by authors named "Amy P Guilfoyle"

The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Gα proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release.

View Article and Find Full Text PDF

GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop.

View Article and Find Full Text PDF

GTPases (G proteins) hydrolyze the conversion of GTP to GDP and free phosphate, comprising an integral part of prokaryotic and eukaryotic signaling, protein biosynthesis and cell division, as well as membrane transport processes. The G protein cycle is brought to a halt after GTP hydrolysis, and requires the release of GDP before a new cycle can be initiated. For eukaryotic heterotrimeric Gαβγ proteins, the interaction with a membrane-bound G protein-coupled receptor catalyzes the release of GDP from the Gα subunit.

View Article and Find Full Text PDF

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain.

View Article and Find Full Text PDF

Mobile gene cassettes collectively carry a highly diverse pool of novel genes, ostensibly for purposes of microbial adaptation. At the sequence level, putative functions can only be assigned to a minority of carried ORFs due to their inherent novelty. Having established these mobilized genes code for folded and functional proteins, the authors have recently adopted the procedures of structural genomics to efficiently sample their structures, thereby scoping their functional range.

View Article and Find Full Text PDF

Mobile gene cassettes collectively contain a highly diverse pool of novel genes that encode many novel adaptive functions. In the non-clinical context, the function of almost all of the encoded proteins remains unknown despite the enormous size of this mobile gene pool. We have been characterizing cassette arrays by taking advantage of the fact that they cluster at discrete sites in chromosomes; even large arrays are thus recoverable in a relatively small number of clones in genomic libraries.

View Article and Find Full Text PDF