Peptidomimetic compounds possessing a caprolactam ring constraint were prepared and evaluated as interleukin-1beta converting enzyme (ICE) inhibitors. The caprolactam ring was used to constrain the P3 region of our inhibitors. This strategy proved to be effective for the synthesis of ICE inhibitors, maintaining key hydrogen bond interactions with the enzyme and invoking a preferred conformation for binding.
View Article and Find Full Text PDFAn 8,5-fused bicyclic peptidomimetic ring system generated by a stereoselective ring metathesis reaction was elaborated into potent inhibitors of interleukin-1beta converting enzyme (ICE, caspase-1). Multiple compounds were found that exhibited ICE IC50 values < 10 nM and were selective over caspase-3 and caspase-8. These active analogs generally possessed good activity (IC50 values < 100 nM) in a whole cell assay measuring IL-1beta production.
View Article and Find Full Text PDFA series of monocyclic thiazepine inhibitors of interleukin-1beta converting enzyme (ICE) were synthesized in eight steps from commercially available intermediates. In vitro biological evaluation showed the thiazepines to be moderately potent ICE inhibitors, with the most active compound exhibiting an IC50 value of 30 nM in an enzyme inhibition assay. Compounds of this class possessed good selectivity against the related enzymes caspase-3 and caspase-8.
View Article and Find Full Text PDFNovel 1-(2-acylhydrazinocarbonyl)cycloalkyl carboxamides were designed as peptidomimetic inhibitors of interleukin-1beta converting enzyme (ICE). A short synthesis was developed and moderately potent ICE inhibitors were identified (IC(50) values <100 nM). Most of the synthesized examples were selective for ICE versus the related cysteine proteases caspase-3 and caspase-8, although several dual-acting inhibitors of ICE and caspase-8 were identified.
View Article and Find Full Text PDFTwo novel 8,6-fused bicyclic peptidomimetic ring systems were synthesized utilizing olefin metathesis as the key reaction for the formation of the eight-membered ring. Both peptidomimetic scaffolds were further elaborated into potent ICE inhibitors, with numerous compounds exhibiting caspase-1 IC(50)s less than 10nM.
View Article and Find Full Text PDFThe application of a tricyclic pyrrolopyrimidinone scaffold for the synthesis of peptidomimetic inhibitors of interleukin-1beta-converting enzyme (ICE) is reported. The synthesis of the tricyclic scaffold and conversion of it to a variety of target ICE inhibitors were accomplished in 4-5 steps. In vitro biological evaluation of the tricyclic pyrrolopyrimidinones revealed fair to good ICE inhibitors, with the most active compound exhibiting an IC50 of 14 nM in a caspase-1 enzyme binding assay.
View Article and Find Full Text PDF