Background: Antitachycardia pacing (ATP) is an established implantable cardioverter-defibrillator (ICD) therapy that terminates ventricular tachycardias (VTs) without painful ICD shocks. However, factors influencing ATP success are not well understood.
Objective: The purpose of this study was to examine ATP success rates by patient, device, and programming characteristics.
Background: Patients with inherited arrhythmogenic diseases (IADs) are often prescribed preventative implantable cardioverter-defibrillators (ICDs) to manage their increased sudden cardiac arrest risk. However, it has been suggested that ICDs in IAD patients may come with additional risk. We aimed to leverage the PainFree SmartShock Technology dataset to compare inappropriate therapies, appropriate therapies, mortality, and complications in patients with and without IAD.
View Article and Find Full Text PDFPacemaker-related infections remain a constant concern due to increased risk of patient morbidity and mortality. Although transvenous pacemakers are expected to have an infection rate ranging from 0.77% to 2.
View Article and Find Full Text PDFAPOBEC3B, an anti-viral cytidine deaminase which induces DNA mutations, has been implicated as a mediator of cancer evolution and therapeutic resistance. Mutational plasticity also drives generation of neoepitopes, which prime anti-tumor T cells. Here, we show that overexpression of APOBEC3B in tumors increases resistance to chemotherapy, but simultaneously heightens sensitivity to immune checkpoint blockade in a murine model of melanoma.
View Article and Find Full Text PDFThe repair of DNA double-stranded breaks (DSBs) is an essential function performed by the Classical Non-Homologous End-Joining (C-NHEJ) pathway in higher eukaryotes. C-NHEJ, in fact, does double duty as it is also required for the repair of the intermediates formed during lymphoid B- and T-cell recombination. Consequently, the failure to properly repair DSBs leads to both genomic instability and immunodeficiency.
View Article and Find Full Text PDFThe DNA cytosine deaminase APOBEC3B (A3B) is normally an antiviral factor in the innate immune response. However, A3B has been implicated in cancer mutagenesis, particularly in solid tumors of the bladder, breast, cervix, head/neck, and lung. Here, we report data on the generation and characterization of a rabbit monoclonal antibody (mAb) for human A3B.
View Article and Find Full Text PDFHIV-1 replication in CD4-positive T lymphocytes requires counteraction of multiple different innate antiviral mechanisms. Macrophage cells are also thought to provide a reservoir for HIV-1 replication but less is known in this cell type about virus restriction and counteraction mechanisms. Many studies have combined to demonstrate roles for APOBEC3D, APOBEC3F, APOBEC3G and APOBEC3H in HIV-1 restriction and mutation in CD4-positive T lymphocytes, whereas the APOBEC enzymes involved in HIV-1 restriction in macrophages have yet to be delineated fully.
View Article and Find Full Text PDFMedulloblastoma and central nervous system primitive neuroectodermal tumors (CNS-PNET) are aggressive, poorly differentiated brain tumors with limited effective therapies. Using () transposon mutagenesis, we identified novel genetic drivers of medulloblastoma and CNS-PNET. Cross-species gene expression analyses classified -driven tumors into distinct medulloblastoma and CNS-PNET subgroups, indicating they resemble human Sonic hedgehog and group 3 and 4 medulloblastoma and CNS neuroblastoma with activation.
View Article and Find Full Text PDFTumor cells frequently evade applied therapies through the accumulation of genomic mutations and rapid evolution. In the case of oncolytic virotherapy, understanding the mechanisms by which cancer cells develop resistance to infection and lysis is critical to the development of more effective viral-based platforms. Here, we identify APOBEC3 as an important factor that restricts the potency of oncolytic vesicular stomatitis virus (VSV).
View Article and Find Full Text PDFThe APOBEC3 DNA cytosine deaminase family comprises a fundamental arm of the innate immune response and is best known for retrovirus restriction. Several APOBEC3 enzymes restrict HIV-1 and related retroviruses by deaminating viral cDNA cytosines to uracils compromising viral genomes. Human APOBEC3B (A3B) shows strong virus restriction activities in a variety of experimental systems, and is subjected to tight post-translational regulation evidenced by cell-specific HIV-1 restriction activity and active nuclear import.
View Article and Find Full Text PDFBreast tumors often display extreme genetic heterogeneity characterized by hundreds of gross chromosomal aberrations and tens of thousands of somatic mutations. Tumor evolution is thought to be ongoing and driven by multiple mutagenic processes. A major outstanding question is whether primary tumors have preexisting mutations for therapy resistance or whether additional DNA damage and mutagenesis are necessary.
View Article and Find Full Text PDFOverexpression of the antiviral DNA cytosine deaminase APOBEC3B has been linked to somatic mutagenesis in many cancers. Human papillomavirus infection accounts for APOBEC3B upregulation in cervical and head/neck cancers, but the mechanisms underlying nonviral malignancies are unclear. In this study, we investigated the signal transduction pathways responsible for APOBEC3B upregulation.
View Article and Find Full Text PDF