If ocean-derived materials are present at Europa's surface, they would represent accessible records of ocean chemistry and habitability, but such materials would be further processed by Europa's harsh radiation environment. In this study, saturated fatty acids were precipitated onto a Europa-relevant hydrated magnesium sulfate and exposed to gamma radiation doses up to 2 MGy at -196°C. Alkane chains, with carbon numbers one less than those of the starting fatty acids, were the most abundant radiolysis products in solvent and thermal extracts analyzed by gas chromatography mass spectrometry.
View Article and Find Full Text PDFCarbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δC) and oxygen (δO) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater.
View Article and Find Full Text PDFMars has been exposed to ionizing radiation for several billion years, and as part of the search for life on the Red Planet, it is crucial to understand the impact of radiation on biosignature preservation. Several NASA and ESA missions are looking for evidence of ancient life in samples collected at depths shallow enough that they have been impacted by galactic cosmic rays (GCRs). In this study, we exposed a diverse set of Mars analog samples to 0.
View Article and Find Full Text PDFThe Mars Science Laboratory rover, , explored the clay mineral-bearing Glen Torridon region for 1 Martian year between January 2019 and January 2021, including a short campaign onto the Greenheugh pediment. The Glen Torridon campaign sought to characterize the geology of the area, seek evidence of habitable environments, and document the onset of a potentially global climatic transition during the Hesperian era. roved 5 km in total throughout Glen Torridon, from the Vera Rubin ridge to the northern margin of the Greenheugh pediment.
View Article and Find Full Text PDFThe Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C).
View Article and Find Full Text PDFHydrothermal spring deposits host unique microbial ecosystems and have the capacity to preserve microbial communities as biosignatures within siliceous sinter layers. This quality makes terrestrial hot springs appealing natural laboratories to study the preservation of both organic and morphologic biosignatures. The discovery of hydrothermal deposits on Mars has called attention to these hot springs as Mars-analog environments, driving forward the study of biosignature preservation in these settings to help prepare future missions targeting the recovery of biosignatures from martian hot-spring deposits.
View Article and Find Full Text PDFSedimentary strata on Mars often contain a mix of sulfates, iron oxides, chlorides, and phyllosilicates, a mineral assemblage that is unique on Earth to acid brine environments. To help characterize the astrobiological potential of depositional environments with similar minerals present, samples from four naturally occurring acidic salt lakes and adjacent mudflats/sandflats in the vicinity of Norseman, Western Australia, were collected and analyzed. Lipid biomarkers were extracted and quantified, revealing biomarkers from vascular plants alongside trace microbial lipids.
View Article and Find Full Text PDFThe Mars Curiosity rover carries a diverse instrument payload to characterize habitable environments in the sedimentary layers of Aeolis Mons. One of these instruments is Sample Analysis at Mars (SAM), which contains a mass spectrometer that is capable of detecting organic compounds via pyrolysis gas chromatography mass spectrometry (py-GC-MS). To identify polar organic molecules, the SAM instrument carries the thermochemolysis reagent tetramethylammonium hydroxide (TMAH) in methanol (hereafter referred to as TMAH).
View Article and Find Full Text PDFClay minerals provide indicators of the evolution of aqueous conditions and possible habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover Curiosity show that ~3.5-billion year (Ga) fluvio-lacustrine mudstones in Gale crater contain up to ~28 weight % (wt %) clay minerals.
View Article and Find Full Text PDFEstablishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover.
View Article and Find Full Text PDFThe search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy.
View Article and Find Full Text PDFThe Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite.
View Article and Find Full Text PDFThe Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively.
View Article and Find Full Text PDFThe Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples.
View Article and Find Full Text PDFStable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.
View Article and Find Full Text PDF