Publications by authors named "Amy M Weeks"

Article Synopsis
  • Secretory proteins rely on the signal peptidase complex (SPC) for proper processing of their signal sequences, which is vital for correct protein folding and placement in eukaryotic cells.
  • The study focused on the role of Spc2 within the SPC, showing that mutations or depletion of Spc2 hinder the complex’s ability to recognize and cleave substrates correctly.
  • Molecular dynamics simulations revealed that without Spc2, the SPC's membrane structure is altered, shedding light on how Spc2 affects the protein biogenesis process.
View Article and Find Full Text PDF

In biological systems, ATP provides an energetic driving force for peptide bond formation, but protein chemists lack tools that emulate this strategy. Inspired by the eukaryotic ubiquitination cascade, we developed an ATP-driven platform for C-terminal activation and peptide ligation based on MccB, a bacterial ancestor of ubiquitin-activating (E1) enzymes that natively catalyzes C-terminal phosphoramidate bond formation. We show that MccB can act on non-native substrates to generate an -AMPylated electrophile that can react with exogenous nucleophiles to form diverse C-terminal functional groups including thioesters, a versatile class of biological intermediates that have been exploited for protein semisynthesis.

View Article and Find Full Text PDF

Proteomic profiling of protease-generated N termini provides key insights into protease function and specificity. However, current technologies have sequence limitations or require specialized synthetic reagents for N-terminal peptide isolation. Here, we introduce an N terminomics toolbox that combines selective N-terminal biotinylation using 2-pyridinecarboxaldehyde (2PCA) reagents with chemically cleavable linkers to enable efficient enrichment of protein N termini.

View Article and Find Full Text PDF

Protein and peptide N termini are important targets for selective modification with chemoproteomics reagents and bioconjugation tools. The N-terminal ⍺-amine occurs only once in each polypeptide chain, making it an attractive target for protein bioconjugation. In cells, new N termini can be generated by proteolytic cleavage and captured by N-terminal modification reagents that enable proteome-wide identification of protease substrates through tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Proteolytic cleavage of cell surface proteins triggers critical processes including cell-cell interactions, receptor activation, and shedding of signaling proteins. Consequently, dysregulated extracellular proteases contribute to malignant cell phenotypes including most cancers. To understand these effects, methods are needed that identify proteolyzed membrane proteins within diverse cellular contexts.

View Article and Find Full Text PDF

N terminomics methods combine selective isolation of protein N-terminal peptides with mass spectrometry (MS)-based proteomics for global profiling of proteolytic cleavage sites. However, traditional N terminomics workflows require cell lysis before N-terminal enrichment and provide poor coverage of N termini derived from cell surface proteins. Here, we describe application of subtiligase-TM, a plasma membrane-targeted peptide ligase, for selective biotinylation of cell surface N termini, enabling their enrichment and analysis by liquid chromatography-tandem MS (LC-MS/MS).

View Article and Find Full Text PDF

Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized.

View Article and Find Full Text PDF

Apoptosis is a cell death program that is executed by the caspases, a family of cysteine proteases that typically cleave after aspartate residues during a proteolytic cascade that systematically dismantles the dying cell. Extensive signaling crosstalk occurs between caspase-mediated proteolysis and kinase-mediated phosphorylation, enabling integration of signals from multiple pathways into the decision to commit to apoptosis. A new study from Maluch et al.

View Article and Find Full Text PDF

Mass spectrometry-based proteomics has been used successfully to identify substrates for proteases. Identification of protease substrates at the cell surface, however, can be challenging since cleavages are less abundant compared to other cellular events. Precise methods are required to delineate cleavage events that take place in these compartmentalized areas.

View Article and Find Full Text PDF

N terminomics is a powerful strategy for profiling proteolytic neo-N termini, but its application to cell surface proteolysis has been limited by the low relative abundance of plasma membrane proteins. Here we apply plasma membrane-targeted subtiligase variants (subtiligase-TM) to efficiently and specifically capture cell surface N termini in live cells. Using this approach, we sequenced 807 cell surface N termini and quantified changes in their abundance in response to stimuli that induce proteolytic remodeling of the cell surface proteome.

View Article and Find Full Text PDF

Post-translational modifications, complex formation, subcellular localization, and cell-type-specific expression create functionally distinct protein subpopulations that enable living systems to execute rapid and precise responses to changing conditions. Systems-level analysis of these subproteomes remains challenging, requiring preservation of spatial information or enrichment of species that are transient and present at low abundance. Engineered proteins have emerged as important tools for selective proteomics based on their capacity for highly specific molecular recognition and their genetic targetability.

View Article and Find Full Text PDF

Enzymes that catalyze peptide ligation are powerful tools for site-specific protein bioconjugation and the study of cellular signaling. Peptide ligases can be divided into two classes: proteases that have been engineered to favor peptide ligation, and protease-related enzymes with naturally evolved peptide ligation activity. Here, we provide a review of key natural peptide ligases and proteases engineered to favor peptide ligation activity.

View Article and Find Full Text PDF

Subtiligase is a powerful enzymatic tool for N-terminal modification of proteins and peptides. In a typical subtiligase-catalyzed N-terminal modification reaction, a peptide ester donor substrate is ligated onto the unblocked N terminus of a protein, resulting in the exchange of the ester bond in the donor substrate for an amide bond between the donor substrate and protein N terminus. Using this strategy, new chemical probes and payloads, such as fluorophores, affinity handles, cytotoxic drugs, and reactive functional groups, can be introduced site-specifically into proteins.

View Article and Find Full Text PDF

Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes.

View Article and Find Full Text PDF

Fluorinated small molecules play an important role in the design of bioactive compounds for a broad range of applications. As such, there is strong interest in developing a deeper understanding of how fluorine affects the interaction of these ligands with their targets. Given the small number of fluorinated metabolites identified to date, insights into fluorine recognition have been provided almost entirely by synthetic systems.

View Article and Find Full Text PDF

Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification.

View Article and Find Full Text PDF

Cysteine can be specifically functionalized by a myriad of acid-base conjugation strategies for applications ranging from probing protein function to antibody-drug conjugates and proteomics. In contrast, selective ligation to the other sulfur-containing amino acid, methionine, has been precluded by its intrinsically weaker nucleophilicity. Here, we report a strategy for chemoselective methionine bioconjugation through redox reactivity, using oxaziridine-based reagents to achieve highly selective, rapid, and robust methionine labeling under a range of biocompatible reaction conditions.

View Article and Find Full Text PDF

The fluoroacetate-producing bacterium Streptomyces cattleya has evolved a fluoroacetyl-CoA thioesterase (FlK) that exhibits a remarkably high level of discrimination for its cognate substrate compared to the cellularly abundant analogue acetyl-CoA, which differs only by the absence of the fluorine substitution. A major determinant of FlK specificity derives from its ability to take advantage of the unique properties of fluorine to enhance the reaction rate, allowing fluorine discrimination under physiological conditions where both substrates are likely to be present at saturating concentrations. Using a combination of pH-rate profiles, pre-steady-state kinetic experiments, and Taft analysis of wild-type and mutant FlKs with a set of substrate analogues, we explore the role of fluorine in controlling the enzyme acylation and deacylation steps.

View Article and Find Full Text PDF

The investigation of unique chemical phenotypes has led to the discovery of enzymes with interesting behaviors that allow us to explore unusual function. The organofluorine-producing microbe Streptomyces cattleya has evolved a fluoroacetyl-CoA thioesterase (FlK) that demonstrates a surprisingly high level of discrimination for a single fluorine substituent on its substrate compared with the cellularly abundant hydrogen analog, acetyl-CoA. In this report, we show that the high selectivity of FlK is achieved through catalysis rather than molecular recognition, where deprotonation at the C(α) position to form a putative ketene intermediate only occurs on the fluorinated substrate, thereby accelerating the rate of hydrolysis 10(4)-fold compared with the nonfluorinated congener.

View Article and Find Full Text PDF

The production of fatty acids is an important cellular pathway for both cellular function and the development of engineered pathways for the synthesis of advanced biofuels. Despite the conserved reaction chemistry of various fatty acid synthase systems, the individual isozymes that catalyze these steps are quite diverse in their structural and biochemical features and are important for controlling differences at the cellular level. One of the key steps in the fatty acid elongation cycle is the enoyl-ACP (CoA) reductase function that drives the equilibrium forward toward chain extension.

View Article and Find Full Text PDF

Elucidating mechanisms of natural organofluorine biosynthesis is essential for a basic understanding of fluorine biochemistry in living systems as well as for expanding biological methods for fluorine incorporation into small molecules of interest. To meet this goal we have combined massively parallel sequencing technologies, genetic knockout, and in vitro biochemical approaches to investigate the fluoride response of the only known genetic host of an organofluorine-producing pathway, Streptomyces cattleya. Interestingly, we have discovered that the major mode of S.

View Article and Find Full Text PDF

Living organisms have evolved a vast array of catalytic functions that make them ideally suited for the production of medicinally and industrially relevant small-molecule targets. Indeed, native metabolic pathways in microbial hosts have long been exploited and optimized for the scalable production of both fine and commodity chemicals. Our increasing capacity for DNA sequencing and synthesis has revealed the molecular basis for the biosynthesis of a variety of complex and useful metabolites and allows the de novo construction of novel metabolic pathways for the production of new and exotic molecular targets in genetically tractable microbes.

View Article and Find Full Text PDF

We have initiated a broad-based program aimed at understanding the molecular basis of fluorine specificity in enzymatic systems, and in this context, we report crystallographic and biochemical studies on a fluoroacetyl-coenzyme A (CoA) specific thioesterase (FlK) from Streptomyces cattleya. Our data establish that FlK is competent to protect its host from fluoroacetate toxicity in vivo and demonstrate a 10(6)-fold discrimination between fluoroacetyl-CoA (k(cat)/K(M) = 5 × 10⁷ M⁻¹ s⁻¹) and acetyl-CoA (k(cat)/K(M) = 30 M⁻¹ s⁻¹) based on a single fluorine substitution that originates from differences in both substrate reactivity and binding. We show that Thr 42, Glu 50, and His 76 are key catalytic residues and identify several factors that influence substrate selectivity.

View Article and Find Full Text PDF