Background: New therapeutics in development for bladder cancer need to address the recalcitrant nature of the disease. Intravesical adoptive cell therapy (ACT) with tumor infiltrating lymphocytes (TIL) can potentially induce durable responses in bladder cancer while maximizing T cells at the tumor site. T cells infused into the bladder directly encounter immunosuppressive populations, such as myeloid derived suppressor cells (MDSCs), that can attenuate T cell responses.
View Article and Find Full Text PDFBackground: Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a promising immunotherapeutic approach for patients with advanced solid tumors. While numerous advances have been made, the contribution of neoantigen-specific CD4T cells within TIL infusion products remains underexplored and therefore offers a significant opportunity for progress.
Methods: We analyzed infused TIL products from metastatic melanoma patients previously treated with ACT for the presence of neoantigen-specific T cells.
Background: The role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) neutralizing antibody response from natural infection and vaccination, and the potential determinants of this response are poorly understood. Characterizing this antibody response and the factors associated with neutralization can help inform future prevention efforts and improve clinical outcomes in those infected.
Objectives: The goals of this study were to prospectively evaluate SARS-CoV-2 antibody levels and the neutralizing antibody responses among naturally infected adults and to determine demographic and behavioral factors independently associated with these responses.
Purpose: Metastatic melanoma is a tumor amenable to immunotherapy in part due to the presence of antigen-specific tumor-infiltrating lymphocytes (TIL). These T cells can be activated and expanded for adoptive cell transfer (ACT), which has resulted in relatively high rates of clinical responses. Similarly, immune checkpoint inhibitors, specifically programmed cell death protein 1 (PD-1) blocking antibodies, augment antitumor immunity and increase the influx of T cells into tumors.
View Article and Find Full Text PDF