Given our recent discovery that it is possible to separate human epidermal stem cells of the skin from their more committed progeny (i.e., transit-amplifying cells and early differentiating cells) using FACS techniques, we sought to determine the comparative tissue regeneration ability of these keratinocyte progenitors.
View Article and Find Full Text PDFThe immunogenicity of a plasmid DNA vaccine incorporating Sindbis virus RNA replicase functions (pSINCP) and expressing antigen 85A (Ag85A) from Mycobacterium tuberculosis was compared with a conventional plasmid DNA vector encoding Ag85A. pSINCP-85A was highly immunogenic in mice and gave enhanced long-term protection against M. tuberculosis compared with the conventional vector.
View Article and Find Full Text PDFIndividuals who are latently infected with Mycobacterium tuberculosis can develop active disease via either endogenous reactivation of the latent bacilli or exogenous reinfection with a second mycobacterial strain. In this study, we investigated whether immunization with a tuberculosis DNA vaccine cocktail that induces significant protective responses in mice could prevent reactivation of disease in a murine latent-tuberculosis model. In addition, we assessed whether DNA vaccination could retard the growth of a secondary aerogenic infection with M.
View Article and Find Full Text PDFDNA vaccination has emerged as a powerful approach in the search for a more efficacious vaccine against tuberculosis. In this study, we evaluated the effectiveness of immunizing with combinations of 10 different tuberculosis DNA vaccines that expressed mycobacterial proteins fused at the N terminus to eukaryotic intracellular targeting sequences. In one vaccine combination, the genes were fused to the tissue plasminogen activator signal sequence (TPA), while in a second combination the same 10 genes were expressed as ubiquitin (Ub)-conjugated proteins.
View Article and Find Full Text PDF