Weak hydrogen bonds are increasingly hypothesized to play key roles in a wide range of chemistry from catalysis to gelation to polymer structure. Here, N/C spin-echo magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) experiments are applied to "view" intermolecular CH···N hydrogen bonding in two selectively labeled organic compounds, 4-[N] cyano-4'-[C] ethynylbiphenyl () and [N,C]-2,4,6-triethynyl-1,3,5-triazine (). The synthesis of , is reported here for the first time via a multistep procedure, where the key element is the reaction of [N]-2,4,6-trichloro-1,3,5-triazine () with [C]-[(trimethylsilyl)ethynyl]zinc chloride () to afford its immediate precursor [N,C]-2,4,6-tris[(trimethylsilyl)ethynyl]-1,3,5-triazine ().
View Article and Find Full Text PDFWe present two sequences which combine ((1)H,(15)N) and ((15)N,(13)C) selective cross-polarization steps with an efficient variant of the J-based homonuclear transfer scheme, in which a spin-state-selective (S(3)E) block is incorporated to improve both resolution and sensitivity in the direct (13)C dimension. We propose these two sequences as a part of a suite of four N-C correlation experiments allowing for the assignment of protein backbone resonances in the solid state. We illustrate these experiments under ultra-fast magic angle spinning conditions on two samples of microcrystalline dimeric human superoxide dismutase (SOD, 153×2 amino acids), in its diamagnetic ("empty", Zn(II)) and paramagnetic (Cu(II), Zn(II)) states.
View Article and Find Full Text PDFA double-zero quantum (DZQ)-refocused INADEQUATE experiment is introduced for J-based NMR correlations under ultra-fast (60 kHz) magic angle spinning (MAS). The experiment records two spectra in the same dataset, a double quantum-single quantum (DQ-SQ) and zero quantum-single quantum (ZQ-SQ) spectrum, whereby the corresponding signals appear at different chemical shifts in ω(1). Furthermore, the spin-state selective excitation (S(3)E) J-decoupling block is incorporated in place of the second refocusing echo of the INADEQUATE scheme, providing an additional gain in sensitivity and resolution.
View Article and Find Full Text PDFBy means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.
View Article and Find Full Text PDF(1)H-(13)C two-dimensional magic-angle spinning (MAS) solid-state NMR correlation spectra, recorded with the MAS-J-HMQC experiment, are presented for campho[2,3-c]pyrazole. For each (13)C moiety, there are six resonances associated with the six distinct molecules in the asymmetric unit cell (Z' = 6). The one-bond C-H correlations observed in the 2D (1)H-(13)C MAS-J-HMQC spectra allow the experimental determination of the (1)H and (13)C chemical shifts associated with the separate CH, CH(2), and CH(3) groups.
View Article and Find Full Text PDFA disaccharide is a challenging case for high-resolution (1)H solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having (1)H chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution (1)H (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. (1)H-(1)H DQ-SQ CRAMPS spectra are presented together with (1)H (DQ)-(13)C correlation spectra obtained with a new pulse sequence that correlates a high-resolution (1)H DQ dimension with a (13)C single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond (13)C-(1)H J couplings.
View Article and Find Full Text PDFHeteronuclear solid-state magic-angle spinning (MAS) NMR experiments for probing (15)N-(17)O dipolar and J couplings are presented for [(2)H(NH(3)),1-(13)C,(15)N,(17)O(2)]glycine.(2)HCl and [(15)N(2),(17)O(2)]uracil. Two-dimensional (15)N-(17)O correlation spectra are obtained using the R(3)-HMQC experiment; for glycine.
View Article and Find Full Text PDFJ Am Chem Soc
January 2008
Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...
View Article and Find Full Text PDF