Rapid and reliable identification of the hemagglutinin (HA) and neuraminidase (NA) genetic clades of an influenza A virus (IAV) sequence from swine can inform control measures and multivalent vaccine composition. Current approaches to genetically characterize HA or NA sequences are based on nucleotide similarity or phylogenetic analyses. Public databases exist to acquire IAV genetic sequences for comparison, but personnel at the diagnostic or production level have difficulty in adequately updating and maintaining relevant sequence datasets for IAV in swine.
View Article and Find Full Text PDFDefining factors that influence spatial and temporal patterns of influenza A virus (IAV) is essential to inform vaccine strain selection and strategies to reduce the spread of potentially zoonotic swine-origin IAV. The relative frequency of detection of the H3 phylogenetic clade 1990.4.
View Article and Find Full Text PDFThe neuraminidase (NA) and hemagglutinin (HA) are essential surface glycoproteins of influenza A virus (IAV). In this study, the evolution of subtype N2 NA paired with H1 and H3 subtype HA in swine was evaluated to understand if the genetic diversity of HA and NA were linked. Using time-scaled Bayesian phylodynamic analyses, the relationships of paired swine N2 with H1 or H3 from 2009 to 2018 were evaluated.
View Article and Find Full Text PDFIn 2017, the Iowa State University Veterinary Diagnostic Laboratory detected a reverse-zoonotic transmission of a human seasonal H3 influenza A virus into swine (IAV-S) in Oklahoma. Pairwise comparison between the recently characterized human seasonal H3 IAV-S (H3.2010.
View Article and Find Full Text PDFInfluenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy.
View Article and Find Full Text PDFInfluenza A virus (IAV) is passively surveilled in swine in the United States through a U.S. Department of Agriculture administered surveillance system.
View Article and Find Full Text PDFHuman-to-swine transmission of influenza A virus (IAV) repeatedly occurs, leading to sustained transmission and increased diversity in swine; human seasonal H3N2 introductions occurred in the 1990s and 2010s and were maintained in North American swine. Swine H3N2 strains were subsequently associated with zoonotic infections, highlighting the need to understand the risk of endemic swine IAV to humans. We quantified antigenic distances between swine H3N2 and human seasonal vaccine strains from 1973 to 2014 using a panel of monovalent antisera raised in pigs in hemagglutination inhibition (HI) assays.
View Article and Find Full Text PDFTwo separate introductions of human seasonal N2 neuraminidase genes were sustained in U.S. swine since 1998 (N2-98) and 2002 (N2-02).
View Article and Find Full Text PDFLive attenuated influenza virus (LAIV) vaccines elicit a combination of systemic and mucosal immunity by mimicking a natural infection. To further enhance protective mucosal responses, we incorporated the gene encoding the IgA-inducing protein (IGIP) into the LAIV genomes of the cold-adapted A/Leningrad/134/17/57 (H2N2) strain (caLen) and the experimental attenuated backbone A/turkey/Ohio/313053/04 (H3N2) (OH/04). Incorporation of IGIP into the caLen background led to a virus that grew poorly in prototypical substrates.
View Article and Find Full Text PDFInfluenza D viruses (IDV) belong to a new genus in the family Orthomyxoviridae. IDV is the aetiologic agent of acute, mild respiratory disease in ungulate species with agricultural importance (cattle, pigs, sheep, goats, camels, etc.).
View Article and Find Full Text PDFIn 2012, swine influenza surveillance detected a novel reassorted influenza A virus (IAV) strain containing human-seasonal hemagglutinin (HA) and neuraminidase (NA). Subsequently, these viruses reassorted, maintaining only the human-origin H3, which resulted in a new lineage of viruses that became the most frequently detected H3 clade in US swine (2010.1 HA clade).
View Article and Find Full Text PDFInfluenza A viruses (IAV) sporadically transmit from swine to humans, typically associated with agricultural fairs in the United States. A human seasonal H3 virus from the 2010-2011 IAV season was introduced into the U.S.
View Article and Find Full Text PDFMethods Mol Biol
February 2021
Swine influenza is a disease of the respiratory tract caused by influenza A virus (IAV). Experimental inoculation of pigs involves either aerosolization of virus and inhalation or the direct introduction of virus into the upper or lower respiratory tract. This chapter covers methods for experimental IAV infection of pigs and collection of specific samples to study the pathogenesis of swine influenza and vaccine efficacy.
View Article and Find Full Text PDFThe neuraminidase (NA) of influenza A viruses (IAV) is a structurally and antigenically important envelope glycoprotein. There are eleven known subtypes of NA of which two, N1 and N2, circulate in swine. The sialidase activity of NA is required for the release of nascent virus particles from infected cell membranes and inhibition of NA enzymatic activity can significantly reduce virus titers and duration of infection.
View Article and Find Full Text PDFThe serum virus neutralization (SVN) assay is a serological test used to detect the presence and magnitude of functional systemic antibodies that prevent infectivity of a virus. The SVN assay is a highly sensitive and specific test that may be applied to influenza A viruses (IAV) in swine to measure the titer of neutralizing antibodies postexposure, postvaccination, or after passive transfer of maternally derived antibody (MDA). Conventional SVN methods performed in vitro are based on inhibition of virus infectivity in cell culture in the presence of neutralizing antibodies in serum.
View Article and Find Full Text PDFEnzyme-linked immunosorbent assays can be used to detect isotype-specific anti-influenza antibodies in biological samples to characterize the porcine immune response to influenza A virus (IAV). The isotype antibody assay is based on an indirect ELISA using whole influenza virus as antigen and commercial antibodies directed against porcine IgG and IgA. Samples such as serum, nasal wash, and bronchoalveolar lavage fluid allow for evaluation of systemic, upper, and lower respiratory tract mucosal antibody responses, respectively.
View Article and Find Full Text PDFInfluenza A viruses (IAVs) of the Orthomyxoviridae virus family cause one of the most important respiratory diseases in pigs and humans. Repeated outbreaks and rapid spread of genetically and antigenically distinct IAVs represent a considerable challenge for animal production and public health. Bidirection transmission of IAV between pigs and people has altered the evolutionary dynamics of IAV, and a "One Health" approach is required to ameliorate morbidity and mortality in both hosts and improve control strategies.
View Article and Find Full Text PDFInfluenza vaccines historically have been multivalent, whole virus inactivated products. The first bivalent, intranasal, live attenuated influenza vaccine (LAIV; Ingelvac Provenza), with H1N1 and H3N2 subtypes, has been approved for use in swine. We investigated the LAIV hemagglutinin () sequences in diagnostic cases submitted to the Iowa State University Veterinary Diagnostic Laboratory and potential vaccine virus reassortment with endemic influenza A virus (IAV) in swine.
View Article and Find Full Text PDFWhile working overnight at a swine exhibition, we identified an influenza A virus (IAV) outbreak in swine, Nanopore sequenced 13 IAV genomes from samples we collected, and predicted in real time that these viruses posed a novel risk to humans due to genetic mismatches between the viruses and current prepandemic candidate vaccine viruses (CVVs). We developed and used a portable IAV sequencing and analysis platform called (Mobile Influenza Analysis) to complete and characterize full-length consensus genomes approximately 18 h after unpacking the mobile lab. Exhibition swine are a known source for zoonotic transmission of IAV to humans and pose a potential pandemic risk.
View Article and Find Full Text PDFCold Spring Harb Perspect Med
March 2021
Influenza A viruses (IAVs) are the causative agents of one of the most important viral respiratory diseases in pigs and humans. Human and swine IAV are prone to interspecies transmission, leading to regular incursions from human to pig and vice versa. This bidirectional transmission of IAV has heavily influenced the evolutionary history of IAV in both species.
View Article and Find Full Text PDFInfluenza D virus has been detected predominantly in cattle from several countries. In the United States, regional and state seropositive rates for influenza D have previously been reported, but little information exists to evaluate national seroprevalence. We performed a serosurveillance study with 1,992 bovine serum samples collected across the country in 2014 and 2015.
View Article and Find Full Text PDFThe diversity of the 8 genes of influenza A viruses (IAV) in swine reflects introductions from nonswine hosts and subsequent antigenic drift and shift. Here, we curated a data set and present a pipeline that assigns evolutionary lineage and genetic clade to query gene segments.
View Article and Find Full Text PDFIn 2017, outbreaks of low and highly pathogenic avian H7N9 viruses were reported in four States in the United States. In total, over 270 000 birds died or were culled, causing significant economic loss. The potential for avian-to-swine transmission of the U.
View Article and Find Full Text PDFThe genetic diversity of influenza A viruses circulating in swine in Mexico complicates control efforts in animals and presents a threat to humans, as shown by influenza A(H1N1)pdm09 virus. To describe evolution of swine influenza A viruses in Mexico and evaluate strains for vaccine development, we sequenced the genomes of 59 viruses and performed antigenic cartography on strains from 5 regions. We found that genetic and antigenic diversity were particularly high in southeast Mexico because of repeated introductions of viruses from humans and swine in other regions in Mexico.
View Article and Find Full Text PDF