Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l-Trp, l-Phe, and l-Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention.
View Article and Find Full Text PDF3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthase catalyses the first step of the shikimate pathway, which is responsible for the biosynthesis of aromatic amino acids in microorganisms and plants. This enzyme catalyses an aldol reaction between phosphoenolpyruvate and D-erythrose 4-phosphate to generate DAH7P. Both 2-deoxyerythrose 4-phosphate and 3-deoxyerythrose 4-phosphate were synthesised and tested as alternative substrates for the enzyme.
View Article and Find Full Text PDFThe analysis of the interaction of threose 4-phosphate and 2-deoxyerythrose 4-phosphate with 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) reveals previously unrecognised mechanistic differences between the DAH7PS-catalysed reaction and that catalysed by the closely related enzyme, 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS).
View Article and Find Full Text PDFRacemic 2-deoxyerythrose 4-phosphate was synthesized and one enantiomer of this compound was found to be a substrate for Escherichia coli 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway. When the reaction was carried out in deuterium oxide, an enzyme-catalyzed regio- and stereoselective incorporation of deuterium into the product was observed.
View Article and Find Full Text PDF