Time is a fundamental component of ecological processes. How animal behavior changes over time has been explored through well-known ecological theories like niche partitioning and predator-prey dynamics. Yet, changes in animal behavior within the shorter 24-hr light-dark cycle have largely gone unstudied.
View Article and Find Full Text PDFGlobal change drivers are altering climatic and edaphic conditions of ecosystems across the globe, and we expect novel plant communities to become more common as a result. In the Colorado Front Range, compositional changes have occurred in the mixed-grass prairie plant community in conjunction with shifts in winter precipitation and atmospheric nitrogen (N) deposition. To test whether these environmental changes have been responsible for the observed plant community change, we conducted an in situ manipulative experiment in a mixed-grass meadow near Boulder, CO.
View Article and Find Full Text PDFSnowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var.
View Article and Find Full Text PDFGlobal change is likely to affect invasive species distribution, especially at range margins. In the eastern Sierra Nevada, California, USA, the invasive annual grass, Bromus tectorum, is patchily distributed and its impacts have been minimal compared with other areas of the Intermountain West. We used a series of in situ field manipulations to determine how B.
View Article and Find Full Text PDF