Uropathogenic Escherichia coli (UPEC) can undergo extensive filamentation in the host during acute urinary tract infections (UTIs). It has been hypothesised that this morphological plasticity allows bacteria to avoid host immune responses such as macrophage engulfment. However, it is still unclear what properties of filaments are important in macrophage-bacteria interactions.
View Article and Find Full Text PDFAdipose-derived stem cells (ADSCs) have incredible potential as an avenue to better understand and treat neurological disorders. While they have been successfully differentiated into neural stem cells and neurons, most such protocols involve 2D environments, which are not representative of in vivo physiology. In this study, human ADSCs were cultured in 1.
View Article and Find Full Text PDFNeurological diseases are among the leading causes of disability and death worldwide and remain difficult to treat. Tissue engineering offers avenues to test potential treatments; however, the development of biologically accurate models of brain tissues remains challenging. Given their neurogenic potential and availability, adipose-derived stem cells (ADSCs) are of interest for creating neural models.
View Article and Find Full Text PDFAntibiotic resistance is one of the greatest threats to modern medicine. Drugs that were once routinely used to treat infections are being rendered ineffective, increasing the demand for novel antibiotics with low potential for resistance. Here we report the synthesis of 18 novel cationic tetrahydroisoquinoline-triazole compounds.
View Article and Find Full Text PDFThe emergence of multi-drug resistant bacteria has increased the need for novel antibiotics to help overcome what may be considered the greatest threat to modern medicine. Here we report the synthesis of fifteen novel 3,5-diaryl-1H- pyrazoles obtained via one-pot cyclic oxidation of a chalcone and hydrazine-monohydrate. The synthesised pyrazoles were then screened against Staphylococcus aureus and Escherichia coli to determine their antibacterial potential.
View Article and Find Full Text PDFRod-shaped bacteria such as can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in , a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC.
View Article and Find Full Text PDFMethicillin-resistant (MRSA) has proven to be an imminent threat to public health, intensifying the need for novel therapeutics. Previous evidence suggests that cannabinoids harbour potent antibacterial activity. In this study, a group of previously inaccessible phytocannabinoids and synthetic analogues were examined for potential antibacterial activity.
View Article and Find Full Text PDFManuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing.
View Article and Find Full Text PDFCharacterisation of protein function based solely on homology searches may overlook functions under specific environmental conditions, or the possibility of a protein having multiple roles. In this study we investigated the role of YtfB, a protein originally identified in a genome-wide screen to cause inhibition of cell division, and has demonstrated to localise to the Escherichia coli division site with some degree of glycan specificity. Interestingly, YtfB also shows homology to the virulence factor OapA from Haemophilus influenzae, which is important for adherence to epithelial cells, indicating the potential of additional function(s) for YtfB.
View Article and Find Full Text PDFBackground: Uropathogenic Escherichia coli (UPEC) are a major cause of urinary tract infection (UTI), one of the most common infectious diseases in humans. UPEC are increasingly associated with resistance to multiple antibiotics. This includes resistance to third-generation cephalosporins, a common class of antibiotics frequently used to treat UTI.
View Article and Find Full Text PDFThe past decade has seen the incorporation of antimicrobial nanosilver (NAg) into medical devices, and, increasingly, in everyday 'antibacterial' products. With the continued rise of antibiotic resistant bacteria, there are concerns that these priority pathogens will also develop resistance to the extensively commercialized nanoparticle antimicrobials. Herein, this work reports the emergence of stable resistance traits to NAg in the WHO-listed priority pathogen Staphylococcus aureus, which has previously been suggested to have no, or very low, capacity for silver resistance.
View Article and Find Full Text PDFInhibition of cell division is critical for viability under DNA-damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied.
View Article and Find Full Text PDFThe disturbing increase in the number of bacterial pathogens that are resistant to multiple, or sometimes all, current antibiotics highlights the desperate need to pursue the discovery and development of novel classes of antibacterials. The wealth of knowledge available about the bacterial cell division machinery has aided target-driven approaches to identify new inhibitor compounds. The main division target being pursued is the highly conserved and essential protein FtsZ.
View Article and Find Full Text PDFProductive bacterial cell division and survival of progeny requires tight coordination between chromosome segregation and cell division to ensure equal partitioning of DNA. Unlike rod-shaped bacteria that undergo division in one plane, the coccoid human pathogen divides in three successive orthogonal planes, which requires a different spatial control compared to rod-shaped cells. To gain a better understanding of how this coordination between chromosome segregation and cell division is regulated in , we investigated proteins that associate with FtsZ and the divisome.
View Article and Find Full Text PDFFront Cell Infect Microbiol
February 2018
ordinarily resides in the lower gastrointestinal tract in humans, but some strains, known as Uropathogenic (UPEC), are also adapted to the relatively harsh environment of the urinary tract. Infections of the urine, bladder and kidneys by UPEC may lead to potentially fatal bloodstream infections. To survive this range of conditions, UPEC strains must have broad and flexible metabolic capabilities and efficiently utilize scarce essential nutrients.
View Article and Find Full Text PDFCondensation studies of chromosomal DNA in E. coli with a tetranuclear ruthenium complex are carried out and images obtained with wide-field fluorescence microscopy. Remarkably different condensate morphologies resulted, depending upon the treatment protocol.
View Article and Find Full Text PDFAdvancements in optical microscopy technology have allowed huge progression in the ability to understand protein structure and dynamics in live bacterial cells using fluorescence microscopy. Paramount to high-quality microscopy is good sample preparation to avoid bacterial cell movement that can result in motion blur during image acquisition. Here, we describe two techniques of sample preparation that reduce unwanted cell movement and are suitable for application to a number of bacterial species and imaging methods.
View Article and Find Full Text PDFBacterial cell division is a fundamental process that requires the coordinated actions of a number of proteins which form a complex macromolecular machine known as the divisome. The membrane-spanning proteins DivIB and its orthologue FtsQ are crucial divisome components in Gram-positive and Gram-negative bacteria respectively. However, the role of almost all of the integral division proteins, including DivIB, still remains largely unknown.
View Article and Find Full Text PDFSpatial regulation of cell division in bacteria has been a focus of research for decades. It has been well studied in two model rod-shaped organisms, Escherichia coli and Bacillus subtilis, with the general belief that division site positioning occurs as a result of the combination of two negative regulatory systems, Min and nucleoid occlusion. These systems influence division by preventing the cytokinetic Z ring from forming anywhere other than midcell.
View Article and Find Full Text PDFLipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria. In Staphylococcus aureus it consists of a polyglycerolphosphate-chain that is retained within the membrane via a glycolipid. Using an immunofluorescence approach, we show here that the LTA polymer is not surface exposed in S.
View Article and Find Full Text PDFIn Bacillus subtilis, EzrA is involved in preventing aberrant formation of FtsZ rings and has also been implicated in the localization cycle of Pbp1. We have identified the orthologue of EzrA in Staphylococcus aureus to be essential for growth and cell division in this organism. Phenotypic analyses following titration of EzrA levels in S.
View Article and Find Full Text PDF