The organization of protein molecules into higher-order nanoscale architectures is ubiquitous in Nature and represents an important goal in synthetic biology. Furthermore, the stabilization of enzyme activity has many practical applications in biotechnology and medicine. Here we describe the symmetry-directed design of an extremely stable, enzymatically active, hollow protein cage of M ≈ 2.
View Article and Find Full Text PDFAerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day.
View Article and Find Full Text PDFIsoprene, the most abundant biogenic volatile organic compound (BVOC) in the atmosphere, and its low-volatility oxidation products lead to secondary organic aerosol (SOA) formation. Isoprene-derived organosulfates formed from reactions of isoprene oxidation products with sulfate in the particle phase are a significant component of SOA and can hydrolyze forming polyols. Despite characterization by mass spectrometry, their basic structural and spectroscopic properties remain poorly understood.
View Article and Find Full Text PDFChemical analysis of atmospheric aerosols is an analytical challenge, as aerosol particles are complex chemical mixtures that can contain hundreds to thousands of species in attoliter volumes at the most abundant sizes in the atmosphere (∼100 nm). These particles have global impacts on climate and health, but there are few methods available that combine imaging and the detailed molecular information from vibrational spectroscopy for individual particles <500 nm. Herein, we show the first application of atomic force microscopy with infrared spectroscopy (AFM-IR) to detect trace organic and inorganic species and probe intraparticle chemical variation in individual particles down to 150 nm.
View Article and Find Full Text PDFMultiphase reactions involving sea spray aerosol (SSA) impact trace gas budgets in coastal regions by acting as a reservoir for oxidized nitrogen and sulfur species, as well as being a source of halogen gases (HCl, ClNO, etc.). Whereas most studies of multiphase reactions on SSA have focused on marine environments, far less is known about SSA transported inland.
View Article and Find Full Text PDFAtmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2015
As silver nanoparticles (AgNPs) are used in a wide array of commercial products and can enter the human body through oral exposure, it is important to understand the fundamental physical and chemical processes leading to changes in nanoparticle size under the conditions of the gastrointestinal (GI) tract. Rapid AgNP growth was observed using nanoparticle tracking analysis with 30 s resolution over a period of 17 min in simulated gastric fluid (SGF) to explore rapid kinetics as a function of pH (SGF at pH 2, 3.5, 4.
View Article and Find Full Text PDFThe first use of surface enhanced Raman spectroscopy (SERS) to detect trace organic and/or inorganic species in ambient atmospheric aerosol particles is presented. This new analytical method provides direct, spectroscopic detection of species present at attogram to femtogram levels in individual submicrometer atmospheric particles. An array of spectral features resulting from organic functional groups in secondary organic aerosol (SOA) material were observed in individual particles impacted on silver nanoparticle-coated substrates.
View Article and Find Full Text PDFParticles are frequently incorporated into clouds or precipitation, influencing climate by acting as cloud condensation or ice nuclei, taking up coatings during cloud processing, and removing species through wet deposition. Many of these particles, particularly ice nuclei, can remain suspended within cloud droplets/crystals as insoluble residues. While previous studies have measured the soluble or bulk mass of species within clouds and precipitation, no studies to date have determined the number concentration and size distribution of insoluble residues in precipitation or cloud water using in situ methods.
View Article and Find Full Text PDF