Publications by authors named "Amy Kristine Bei"

Background: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapy (ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in sub-Saharan Africa, where most malaria deaths occur.

Methods: Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum isolates collected in 2017 in Thiès (Senegal) expressed in the Ring-stage Survival Assay (RSA).

View Article and Find Full Text PDF

Introduction: Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapies (ACTs), the current frontline malaria curative treatments. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in Sub-Saharan Africa where most malaria deaths occur.

Methods: Here, we evaluated susceptibility to dihydroartemisinin (DHA) from 38 isolates collected in 2017 in Thiès (Senegal) expressed with the Ring-stage Survival Assay (RSA).

View Article and Find Full Text PDF

Having the ability to rapidly, accurately, and robustly measure Plasmodium falciparum merozoite invasion is a critical component in effective assessment of a blood stage vaccine's mechanism of action. Being able to measure invasion of erythrocytes accurately, objectively and in a high throughput fashion is of critical importance. Here, we describe a simple and robust flow cytometry method that allows for the measurement of the key invasion parameters of parasite multiplication rate and erythrocyte selectivity-both important determinants of disease severity-from the schizont to the ring stage of the parasite's life-cycle, thus separating invasion from growth of the parasite.

View Article and Find Full Text PDF

Variant surface antigens play an important role in Plasmodium falciparum malaria pathogenesis and in immune evasion by the parasite. Although most work to date has focused on P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1), two other multigene families encoding STEVOR and RIFIN are expressed in invasive merozoites and on the infected erythrocyte surface.

View Article and Find Full Text PDF