Publications by authors named "Amy Krans"

Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited neurodegenerative disorder caused by intronic biallelic, nonreference CCCTT/AAGGG repeat expansions within . To investigate how these repeats cause disease, we generated patient induced pluripotent stem cell-derived neurons (iNeurons). CCCTT/AAGGG repeat expansions do not alter neuronal splicing, expression, or DNA repair pathway function.

View Article and Find Full Text PDF

A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation.

View Article and Find Full Text PDF

Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a late onset, recessively inherited neurodegenerative disorder caused by biallelic, non-reference pentameric AAGGG(CCCTT) repeat expansions within the second intron of replication factor complex subunit 1 (). To investigate how these repeats cause disease, we generated CANVAS patient induced pluripotent stem cell (iPSC) derived neurons (iNeurons) and utilized calcium imaging and transcriptomic analysis to define repeat-elicited gain-of-function and loss-of-function contributions to neuronal toxicity. AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway functions.

View Article and Find Full Text PDF

A GGGGCC (G4C2) hexanucleotide repeat expansion in causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation.

View Article and Find Full Text PDF

CGG repeat expansions in the FMR1 5'UTR cause the neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). These repeats form stable RNA secondary structures that support aberrant translation in the absence of an AUG start codon (RAN translation), producing aggregate-prone peptides that accumulate within intranuclear neuronal inclusions and contribute to neurotoxicity. Here, we show that the most abundant RAN translation product, FMRpolyG, is markedly less toxic when generated from a construct with a non-repetitive alternating codon sequence in place of the CGG repeat.

View Article and Find Full Text PDF

Repeat associated non-AUG (RAN) translation of CGG repeats in the 5'UTR of FMR1 produces toxic proteins that contribute to fragile X-associated tremor/ataxia syndrome (FXTAS) pathogenesis. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG upstream of the repeat. Accurate FMRpolyG measurements in FXTAS patients are lacking.

View Article and Find Full Text PDF

GGGGCC (GC) hexanucleotide repeat expansions in the endosomal trafficking gene C9orf72 are the most common genetic cause of ALS and frontotemporal dementia. Repeat-associated non-AUG (RAN) translation of this expansion through near-cognate initiation codon usage and internal ribosomal entry generates toxic proteins that accumulate in patients' brains and contribute to disease pathogenesis. The helicase protein DEAH-box helicase 36 (DHX36-G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells.

View Article and Find Full Text PDF

Transcribed nucleotide repeat expansions form detectable RNA foci in patient cells that contribute to disease pathogenesis. The most widely used method for detecting RNA foci, fluorescence in situ hybridization (FISH), is powerful but can suffer from issues related to signal above background. Here we developed a repeat-specific form of hybridization chain reaction (R-HCR) as an alternative method for detection of repeat RNA foci in two neurodegenerative disorders: C9orf72 associated ALS and frontotemporal dementia (C9 ALS/FTD) and Fragile X-associated tremor/ataxia syndrome.

View Article and Find Full Text PDF

An intronic hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This repeat is thought to elicit toxicity through RNA mediated protein sequestration and repeat-associated non-AUG (RAN) translation of dipeptide repeat proteins (DPRs). We generated a series of transgenic Drosophila models expressing GGGGCC (GC) repeats either inside of an artificial intron within a GFP reporter or within the 5' untranslated region (UTR) of GFP placed in different downstream reading frames.

View Article and Find Full Text PDF

Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5'-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production.

View Article and Find Full Text PDF

CGG repeat expansions in FMR1 cause the neurodegenerative disorder Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). Ubiquitinated neuronal intranuclear inclusions (NIIs) are the neuropathological hallmark of FXTAS. Both sense strand derived CGG repeats and antisense strand derived CCG repeats support non-AUG initiated (RAN) translation of homopolymeric proteins in potentially 6 different reading frames.

View Article and Find Full Text PDF

Co-occurrence of multiple neuropathologic changes is a common phenomenon, most prominently seen in Alzheimer's disease (AD) and Parkinson's disease (PD), complicating clinical diagnosis and patient management. Reports of co-occurring pathological processes are emerging in the group of genetically defined repeat-associated non-AUG (RAN)-translation related diseases. Here we report a case of Fragile X-associated tremor-ataxia syndrome (FXTAS) with widespread and abundant nuclear inclusions of the RAN-translation related FMRpolyG-peptide.

View Article and Find Full Text PDF

A CGG trinucleotide repeat expansion in the 5' UTR of FMR1 causes the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). This repeat supports a non-canonical mode of protein synthesis known as repeat-associated, non-AUG (RAN) translation. The mechanism underlying RAN translation at CGG repeats remains unclear.

View Article and Find Full Text PDF

Hexanucleotide repeat expansions in C9orf72 are the most common inherited cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The expansions elicit toxicity in part through repeat-associated non-AUG (RAN) translation of the intronic (GGGGCC)n sequence into dipeptide repeat-containing proteins (DPRs). Little is known, however, about the structural characteristics and aggregation propensities of the dipeptide units comprising DPRs.

View Article and Find Full Text PDF

Objective: Repeat-associated non-AUG (RAN) translation drives production of toxic proteins from pathogenic repeat sequences in multiple untreatable neurodegenerative disorders. Fragile X-associated tremor/ataxia syndrome (FXTAS) is one such condition, resulting from a CGG trinucleotide repeat expansion in the 5' leader sequence of the FMR1 gene. RAN proteins from the CGG repeat accumulate in ubiquitinated inclusions in FXTAS patient brains and elicit toxicity.

View Article and Find Full Text PDF

Repeat-associated non-AUG (RAN) translation produces toxic polypeptides from nucleotide repeat expansions in the absence of an AUG start codon and contributes to neurodegenerative disorders such as ALS and fragile X-associated tremor/ataxia syndrome. How RAN translation occurs is unknown. Here we define the critical sequence and initiation factors that mediate CGG repeat RAN translation in the 5' leader of fragile X mRNA, FMR1.

View Article and Find Full Text PDF

Fragile X-associated tremor ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG trinucleotide repeat expansion in the 5' UTR of the Fragile X gene, FMR1. FXTAS is thought to arise primarily from an RNA gain-of-function toxicity mechanism. However, recent studies demonstrate that the repeat also elicits production of a toxic polyglycine protein, FMRpolyG, via repeat-associated non-AUG (RAN)-initiated translation.

View Article and Find Full Text PDF

Nucleotide repeat expansions can elicit neurodegeneration as RNA by sequestering specific RNA-binding proteins, preventing them from performing their normal functions. Conversely, mutations in RNA-binding proteins can trigger neurodegeneration at least partly by altering RNA metabolism. In Fragile X-associated tremor/ataxia syndrome (FXTAS), a CGG repeat expansion in the 5'UTR of the fragile X gene (FMR1) leads to progressive neurodegeneration in patients and CGG repeats in isolation elicit toxicity in Drosophila and other animal models.

View Article and Find Full Text PDF

Fragile X-associated tremor ataxia syndrome (FXTAS) results from a CGG repeat expansion in the 5' UTR of FMR1. This repeat is thought to elicit toxicity as RNA, yet disease brains contain ubiquitin-positive neuronal inclusions, a pathologic hallmark of protein-mediated neurodegeneration. We explain this paradox by demonstrating that CGG repeats trigger repeat-associated non-AUG-initiated (RAN) translation of a cryptic polyglycine-containing protein, FMRpolyG.

View Article and Find Full Text PDF

Fragile X premutation-associated disorders, including Fragile X-associated Tremor Ataxia Syndrome, result from unmethylated CGG repeat expansions in the 5' untranslated region (UTR) of the FMR1 gene. Premutation-sized repeats increase FMR1 transcription but impair rapid translation of the Fragile X mental retardation protein (FMRP), which is absent in Fragile X Syndrome (FXS). Normally, FMRP binds to RNA and regulates metabotropic glutamate receptor (mGluR)-mediated synaptic translation, allowing for dendritic synthesis of several proteins.

View Article and Find Full Text PDF

Fragile X Tremor Ataxia Syndrome (FXTAS) is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 5'UTR of the fragile X syndrome (FXS) gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown.

View Article and Find Full Text PDF