Mutations of human oncoprotein p21(Ras) (hereafter Ras) at glutamine 61 are known to slow the rate of guanosine triphosphate (GTP) hydrolysis and transform healthy cells into malignant cells. It has been hypothesized that this glutamine plays a role in the intrinsic mechanism of GTP hydrolysis by interacting with an active site water molecule that electrostatically stabilizes the formation of the charged transition state at the γ-phosphate during hydrolysis. We have tested the interactions between amino acids at this position and water by measuring changes in the electrostatic field experienced by a nitrile probe positioned near Ras Q61 using vibrational Stark effect (VSE) spectroscopy.
View Article and Find Full Text PDFElectrostatic fields at the interface of the Ras binding domain of the protein Ral guanine nucleotide dissociation stimulator (RalGDS) with the structurally analogous GTPases Ras and Rap1A were measured with vibrational Stark effect (VSE) spectroscopy. Eleven residues on the surface of RalGDS that participate in this protein-protein interaction were systematically mutated to cysteine and subsequently converted to cyanocysteine in order to introduce a nitrile VSE probe in the form of the thiocyanate (SCN) functional group. The measured SCN absorption energy on the monomeric protein was compared with solvent-accessible surface area (SASA) calculations and solutions to the Poisson-Boltzmann equation using Boltzmann-weighted structural snapshots from molecular dynamics simulations.
View Article and Find Full Text PDF