Publications by authors named "Amy J Cairns"

On-demand in situ preparation of industrially relevant organic acids, namely, methanesulfonic acid, triflic acid, and trifluoroacetic acid, is demonstrated in this study. Sodium and potassium bromate were found to selectively oxidize a series of ammonium salts NHX, where X = OMs, OTf, or OTFAc, with characteristic clock reaction behavior. The redox system undergoes rapid acid formation following an extended induction time at 150 °C and is identified as a potential candidate for high-temperature oil field chemistry applications where on-demand acid placement is required.

View Article and Find Full Text PDF

A redox chemistry approach has been employed to synthesize an assortment of acids in the subterranean environment for the purpose of enhancing productivity from hydrocarbon-bearing rock formations. Experimental studies revealed that bromate selectively oxidizes a series of ammonium salts NHX where X = F, Cl, Br, SO, and CFCO to produce 5-17 wt % HX. Importantly, the in situ method allows strategic placement of the acid in the zone of interest where the fluid is heated, and the reaction is triggered.

View Article and Find Full Text PDF

A strategy based on metal-ligand directed assembly of metal-organic squares (MOSs), built-up from four-membered ring (4MR) secondary building units (SBUs), has been employed for the design and construction of isoreticular zeolite-like supramolecular assemblies (ZSAs). Four porous Co-based ZSAs having the same underlying gis topology, but differing only with respect to the capping and bridging linkers, were successfully isolated and fully characterized. In this series, each MOS in ZSA-3-ZSA-6 possess an ideal square geometry and is connected to four neighboring MOS via a total of 16 hydrogen bonds to give a 3-periodic porous network.

View Article and Find Full Text PDF

The development of materials for CO2 capture with high selectivity and high tolerance to H2S is of prime importance for various industrially relevant gas streams (e.g. natural gas and biogas upgrading as well as pre-combustion capture).

View Article and Find Full Text PDF

A series of highly porous MOFs were deliberately targeted to contain a 12-connected rare earth hexanuclear cluster and quadrangular tetracarboxylate ligands. The resultant MOFs have an underlying topology of , and are thus (4,12)-c -MOFs. This targeted rare earth -MOF platform offers the potential to assess the effect of pore functionality and size, ligand functionalization and/or expansion, on the adsorption properties of relevant gases.

View Article and Find Full Text PDF

Gaining control over the assembly of highly porous rare-earth (RE) based metal-organic frameworks (MOFs) remains challenging. Here we report the latest discoveries on our continuous quest for highly connected nets. The topological exploration based on the noncompatibility of a 12-connected RE polynuclear carboxylate-based cluster, points of extension matching the 12 vertices of the cuboctahedron (cuo), with 3-connected organic ligands led to the discovery of two fascinating and highly connected minimal edge-transitive nets, pek and aea.

View Article and Find Full Text PDF

Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e., Eu(3+), Tb(3+), and Y(3+)) fcu metal-organic frameworks (MOFs) with restricted window apertures.

View Article and Find Full Text PDF

CONSPECTUS: The total world energy demand is predicted to rise significantly over the next few decades, primarily driven by the continuous growth of the developing world. With rapid depletion of nonrenewable traditional fossil fuels, which currently account for almost 86% of the worldwide energy output, the search for viable alternative energy resources is becoming more important from a national security and economic development standpoint. Nuclear energy, an emission-free, high-energy-density source produced by means of controlled nuclear fission, is often considered as a clean, affordable alternative to fossil fuel.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a promising class of porous materials because it is possible to mutually control their porous structure, composition and functionality. However, it is still a challenge to predict the network topology of such framework materials prior to their synthesis. Here we use a new rare earth (RE) nonanuclear carboxylate-based cluster as an 18-connected molecular building block to form a gea-MOF (gea-MOF-1) based on a (3,18)-connected net.

View Article and Find Full Text PDF

A novel porous organic polymer has been synthesized using the molecular building block approach to deliberately encompass aldehyde functionalities amenable to post functionalization. The resultant porous framework allows a facile, one-step quantitative and post-synthetic functionalization by amines, permitting enhanced CO2 sorption properties.

View Article and Find Full Text PDF

Two porous nets have been prepared via a 2-step crystal engineering approach that links decorated trigonal prismatic [Cr3(μ3-O)(CO2)6] and [Cu3(μ3-Cl)(RNH2)6Cl6] molecular building blocks, MBBs. tp-PMBB-5-acs-1 is a rare example of a rigid acs underlying net whereas tp-PMBB-6-stp-1, an stp underlying net, exhibits free NH2 groups in its channels and a relatively high isosteric heat of adsorption for CO2.

View Article and Find Full Text PDF

Bottom-up fabrication of complex 3D hollow superstructures from nonspherical building blocks (BBs) poses a significant challenge for scientists in materials chemistry and physics. Spherical colloidal silica or polystyrene particles are therefore often integrated as BBs for the preparation of an emerging class of materials, namely colloidosomes (using colloidal particles for Pickering stabilization and fusing them to form a permeable shell). Herein, we describe for the first time a one-step emulsion-based technique that permits the assembly of metal-organic framework (MOF) faceted polyhedral BBs (i.

View Article and Find Full Text PDF

A series of fcu-MOFs based on rare-earth (RE) metals and linear fluorinated/nonfluorinated, homo/heterofunctional ligands were targeted and synthesized. This particular fcu-MOF platform was selected because of its unique structural characteristics combined with the ability/potential to dictate and regulate its chemical properties (e.g.

View Article and Find Full Text PDF

The energy costs associated with the separation and purification of industrial commodities, such as gases, fine chemicals and fresh water, currently represent around 15 per cent of global energy production, and the demand for such commodities is projected to triple by 2050 (ref. 1). The challenge of developing effective separation and purification technologies that have much smaller energy footprints is greater for carbon dioxide (CO2) than for other gases; in addition to its involvement in climate change, CO2 is an impurity in natural gas, biogas (natural gas produced from biomass), syngas (CO/H2, the main source of hydrogen in refineries) and many other gas streams.

View Article and Find Full Text PDF

Here we report the successful growth of highly crystalline homogeneous MOF thin films of HKUST-1 and ZIF-8 on mesoporous silica foam, by employing a layer-by-layer (LBL) method. The ability to control and direct the growth of MOF thin films on confined surfaces, using the stepwise LBL method, paves the way for new prospective applications of such hybrid systems.

View Article and Find Full Text PDF

In this work, we carry out an investigation on shape-controlled growth of In(III)- and Ga(III)-based square-octahedral metal-organic frameworks (soc-MOFs). In particular, controllable crystal morphological evolution from simple cubes to complex octadecahedra has been achieved, and resultant highly uniform crystal building blocks promise new research opportunities for preparation of self-assembled MOF materials and related applications.

View Article and Find Full Text PDF

The uniqueness of the rht-MOF platform, based on the singular (3,24)-connected net, allows for the facile design and synthesis of functionalized materials for desired applications. Here we designed a nitrogen-rich trefoil hexacarboxylate (trigonal tri-isophthalate) ligand, which serves to act as the trigonal molecular building block while concurrently coding the formation of the targeted truncated cuboctahedral supermolecular building block (in situ), and enhancing the CO(2) uptake in the resultant rht-MOF.

View Article and Find Full Text PDF

A new blueprint network for the design and synthesis of porous, functional 3D metal-organic frameworks (MOFs) has been identified, namely, the tbo net. Accordingly, tbo-MOFs based on this unique (3,4)-connected net can be exclusively constructed utilizing a combination of well-known and readily targeted [M(R-BDC)](n) MOF layers [i.e.

View Article and Find Full Text PDF

A rare example of a microporous metal-organic phosphate, [Co(12)(L)(6)(μ(3)-PO(4))(4)(μ(3)-F)(4)(μ-H(2)O)(6)][NO(3)](2) (1), is synthesized by the reaction of a [(η(5)-C(5)H(5))Fe(II)](+)-functionalized terephthalate ligand with Co(NO(3))(2)·6H(2)O and phosphate and fluoride ions generated from the in situ hydrolysis of hexafluorophosphate. 1 is a cubic, 12-connected, face-centered cubic framework sustained by the linear connection of unprecedented, dodecanuclear truncated tetrahedral coordination clusters.

View Article and Find Full Text PDF

Two zeolite-like metal-organic frameworks (ZMOFs) with lta- and ast- topologies, zeolitic nets that can be interpreted as augmented edge-transitive 8-connected nets, are targeted through directed self-assembly of metal-organic cubes (MOCs) as supermolecular building blocks (SBBs).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpqmt3ulta9acfuroc1ddi6nq50orrtac): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once