Background: Equine recurrent laryngeal neuropathy (RLN) is an economically important upper respiratory tract (URT) disease with a genetic contribution to risk, but genetic variants independent of height have not been identified for Thoroughbreds. The method of clinical assessment for RLN is critical to accurately phenotype groups for genetic studies.
Objectives: To identify genetic risk loci for RLN in Thoroughbreds in a genome-wide association study (GWAS) following high-resolution phenotyping.
Thoroughbred horses are bred for competitive racing and undergo intense training regimes. The maintenance of physical soundness and desirable behavioural characteristics are critical to the longevity of a racing career. Horses intended for Flat racing generally enter training as yearlings and undergo introductory training prior to exercise conditioning for racing.
View Article and Find Full Text PDFBehavioural plasticity enables horses entering an exercise training programme to adapt with reduced stress. We characterised SNPs associated with behaviour in yearling Thoroughbred horses using genomics analyses for two phenotypes: (1) handler-assessed coping with early training events [coping] (n = 96); and (2) variation in salivary cortisol concentration at the first backing event [cortisol] (n = 34). Using RNA-seq derived gene expression data for amygdala and hippocampus tissues from n = 2 Thoroughbred stallions, we refined the SNPs to those with functional relevance to behaviour by cross-referencing to the 500 most highly expressed genes in each tissue.
View Article and Find Full Text PDFSelection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred).
View Article and Find Full Text PDFAlthough inspiratory muscle training (IMT) is reported to improve inspiratory muscle strength in humans little has been reported for horses. We tested the hypothesis that IMT would maintain and/or improve inspiratory muscle strength variables measured in Thoroughbreds during detraining. Thoroughbreds from one training yard were placed into a control (Con, n = 3 males n = 7 females; median age 2.
View Article and Find Full Text PDF