Humboldt Penguin (Spheniscus humboldti) population declines are attributable to several multifaceted anthropogenic impacts. At present, the exposure of Humboldt Penguins to high concentrations of heavy metals in the marine environment is a preeminent concern, due to mining along the Peruvian coast near key rookery sites. Metal and selenium concentrations were determined in eggs collected from September 2020 to April 2021 from a managed-care penguin population at the Brookfield Zoo to establish reference values for health indices conducted on wild populations.
View Article and Find Full Text PDFPort sediments are often contaminated with metals and organic compounds from anthropogenic sources. Remobilization of sediment during a planned expansion of Port Everglades near Fort Lauderdale, Florida (USA) has the potential to harm adjacent benthic communities, including coral reefs. Twelve sediment cores were collected from four Port Everglades sites and a control site; surface sediment was collected at two nearby coral reef sites.
View Article and Find Full Text PDFDetermining trophic habits of predator communities is essential to measure interspecific interactions and response to environmental fluctuations. South American fur seals, Arctocephalus australis (SAFS) and sea lions Otaria byronia (SASL), coexist along the coasts of Peru. Recently, ocean warming events (2014-2017) that can decrease and impoverish prey biomass have occurred in the Peruvian Humboldt Current System.
View Article and Find Full Text PDFConcentrations of 15 trace elements (aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, tin, vanadium, and zinc) were determined in vibrissae (whiskers) and serum of two sympatric pinniped species, the Peruvian fur seal population (PFS; Arctocephalus australis Peruvian subpopulation) and South American sea lion (SASL; Otaria byronia) at Punta San Juan, Peru during 2011-19 sampling events. Element concentrations were 2-20 times higher in vibrissae than in serum. Vibrissae and serum concentrations of several elements, including aluminum, arsenic, and lead, suggest that environmental contaminants may affect the health of pinnipeds at Punta San Juan.
View Article and Find Full Text PDFOne of the best studied global "hot spots" for ecological mercury (Hg) contamination is south Florida (USA), where elevated Hg concentrations in environmental media and regional wildlife were first described over thirty years ago. While Hg contamination has lessened in this region, it is still critical to monitor Hg uptake and potential risks in south Florida wildlife, especially in marine-associated birds, which are known to accumulate potentially toxic Hg levels. In this study, total Hg (THg) concentrations were measured in liver, kidney, muscle, and feathers of 101 individuals from seven species of south Florida birds: brown pelican Pelecanus occidentalis, double-crested cormorant Phalacrocorax auratus, herring gull Larus argentatus, laughing gull Leucophaeus atricilla, northern gannet Morus bassanus, royal tern Thalasseus maximus, and osprey Pandion halietus.
View Article and Find Full Text PDFThis study established the first baseline of changing elemental concentrations in bowhead whale baleen over time (1958-1999). From previously published stable isotope data, year, season (summer or winter), and location (Beaufort or Bering/Chukchi seas) were attributed to each sample. Thirteen elements (Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, Zn) in baleen from nine subsistence-harvested bowhead whales (n = 138) were detected.
View Article and Find Full Text PDFArtificial reefs may enhance the biological production of reef-associated flora and fauna, but their trophic structure relative to that of natural reefs remains understudied. We assessed trophic relationships by 1) comparing reef fish communities and 2) comparing δC and δN in 43 fish species from both artificial reef sites and adjacent natural reef tracts in Broward County, Florida. We tested the effect of sampling location (artificial, first, and second reef), general feeding strategy (herbivore, omnivore, invertivore, and carnivore), phylogeny, and standard length on δC and δN.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
December 2014
We used electroretinography (ERG) to determine spectral and luminous sensitivities, and the temporal resolution (flicker fusion frequency, FFF) in three sympatric (but phylogenetically distant) coastal shark species: Carcharhinus plumbeus (sandbar shark), Mustelus canis (smooth dogfish), and Squalus acanthias (spiny dogfish). Spectral sensitivities were similar (range ~400-600 nm, peak sensitivity ~470 nm), with a high likelihood of rod/cone dichromacy enhancing contrast discrimination. Spiny dogfish were significantly less light sensitive than the other species, whereas their FFF was ~19 Hz at maximum intensities; a value equal to that of sandbar shark and significantly above that of smooth dogfish (~9-12 Hz).
View Article and Find Full Text PDFUnderstanding the ecology and behaviour of endangered species is essential for developing effective management and conservation strategies. We used stable isotope analysis to investigate the foraging behaviour of critically endangered Mediterranean monk seals (Monachus monachus) in Greece. We measured carbon and nitrogen isotope ratios (expressed as δ(13)C and δ(15)N values, respectively) derived from the hair of deceased adult and juvenile seals and the muscle of their known prey to quantify their diets.
View Article and Find Full Text PDFSea lion and seal populations in Alaskan waters underwent various degrees of decline during the latter half of the twentieth century and the cause(s) for the declines remain uncertain. The stable carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) isotope ratios in bone collagen from wild Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and harbor seals (Phoca vitulina) from the Bering Sea and Gulf of Alaska were measured for the period 1951-1997 to test the hypothesis that a change in trophic level may have occurred during this interval and contributed to the population declines. A significant change in δ(15)N in pinniped tissues over time would imply a marked change in trophic level.
View Article and Find Full Text PDF