Publications by authors named "Amy Harms"

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily manifests as a flu-like illness with lung injury, often necessitating supplemental oxygen. Elderly individuals and those with pre-existing cardiovascular diseases are at increased risk of mortality. The endothelial barrier disruption observed in patients indicates systemic viral invasion and widespread endotheliitis.

View Article and Find Full Text PDF

Scope: Cow's milk allergy (CMA) is one of the most prevalent food allergies in early childhood, often treated via elimination diets including standard amino acid-based formula or amino acid-based formula supplemented with synbiotics (AAF or AAF-S). This work aimed to assess the effect of cow's milk (CM) tolerance acquisition and synbiotic (inulin, oligofructose, Bifidobacterium breve M-16 V) supplementation on the fecal metabolome in infants with IgE-mediated CMA.

Methods And Results: The CMA-allergic infants received AAF or AAF-S for a year during which fecal samples were collected.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolomics using HILIC-MS is effective for identifying polar metabolites and aiding in biomarker discovery, but matrix effects can complicate biological analysis.
  • Evaluation of matrix effects is critical in method development, and this study tested two techniques: stable isotope labeled-internal standards and post-column infusion (PCI).
  • Results indicated that the PCI method is more advantageous for untargeted analysis, showing better performance in assessing matrix effects and highlighting significant ion suppression in various plasma samples.
View Article and Find Full Text PDF

Numerous signaling pathways are activated during hypoxia to facilitate angiogenesis, promoting interactions among endothelial cells and initiating downstream signaling cascades. Although the pivotal role of the nitric oxide (NO) response pathway is well-established, the involvement of arginine-specific metabolism and bioactive lipid mechanisms in 3D flow-activated in vitro models remains less understood. In this study, we explored the levels of arginine-specific metabolites and bioactive lipids in human coronary artery endothelial cells (HCAECs) under both transient and persistent hypoxia.

View Article and Find Full Text PDF

The matrix effect limits the accuracy of quantitation of the otherwise popular metabolomics technique liquid chromatography coupled to mass spectrometry (LC-MS). The gold standard to correct for this phenomenon, whereby compounds coeluting with the analyte of interest cause ionization enhancement or suppression, is to quantify an analyte based on the peak area ratio with an isotopologue added to the sample as an internal standard. However, these stable isotopes are expensive and sometimes unavailable.

View Article and Find Full Text PDF

Oxylipins are well-known lipid mediators in various inflammatory conditions. Their endogenous concentrations range from low picomolar to nanomolar, and there are growing demands to determine their concentrations in low-volume matrices for pathological studies, including blood, cerebrospinal fluids from animal disease models, infants, and microsampling devices. Most of the published quantification methods for comprehensive profiling of oxylipins still require more than 50 µL plasma as a starting volume to detect these low levels.

View Article and Find Full Text PDF
Article Synopsis
  • Lipid metabolism plays a crucial role in the progression of triple-negative breast cancer (TNBC), which is particularly aggressive and poses a high risk for women.
  • The study focused on the relationship between epithelial-to-mesenchymal transition (EMT) and lipid profiles in TNBC cells, highlighting the decrease of the epithelial marker EpCAM during this process.
  • Through lipidomic profiling and mass spectrometry, researchers found distinct lipid profiles linked to varying levels of EpCAM expression, suggesting that lower lysophatidylethanolamine (LPE) levels may influence EMT regulation in TNBC.
View Article and Find Full Text PDF

Fatty acid oxidation disorders (FAOD) are inborn errors of metabolism that occur due to deficiency of specific enzyme activities and transporter proteins involved in the mitochondrial metabolism of fatty acids, causing a deficiency in ATP production. The identification of suitable biomarkers plays a crucial role in predicting the future risk of disease and monitoring responses to therapies. Acyl-CoAs are directly involved in the steps of fatty acid oxidation and are the primary biomarkers associated with FAOD.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists from 34 labs in 19 countries worked together to measure certain fats (ceramides) in human blood using special techniques.
  • They used both standard methods and their own methods to get very accurate and consistent results.
  • The study helps improve future medical tests and treatments by providing reliable information about these fats in blood samples.
View Article and Find Full Text PDF

Background: Live single-cell metabolomic studies encounter inherent difficulties attributed to the limited sample volume, minimal compound quantity, and insufficient sensitivity in the Mass Spectrometry (MS) method used to obtain single-cell data. However, understanding cellular heterogeneity, functional diversity, and metabolic processes within individual cells is essential. Exploring how individual cells respond to stimuli, including drugs, environmental changes, or signaling molecules, offers insights into biology, oncology, and drug discovery.

View Article and Find Full Text PDF

Endothelial dysfunction, prevalent in cardiovascular diseases (CVDs) and linked to conditions like diabetes, hypertension, obesity, renal failure, or hypercholesterolemia, is characterized by diminished nitric oxide (NO) bioavailability-a key signaling molecule for vascular homeostasis. Current two-dimensional (2D) in vitro studies on NO synthesis by endothelial cells (ECs) lack the crucial laminar shear stress, a vital factor in modulating the NO-generating enzyme, endothelial nitric oxide synthase (eNOS), under physiological conditions. Here we developed a tracer-based metabolomics approach to measure NO-specific metabolites with mass spectrometry (MS) and show the impact of fluid flow on metabolic parameters associated with NO synthesis using 2D and 3D platforms.

View Article and Find Full Text PDF

Background: Isoprostanes and prostaglandins are biomarkers for oxidative stress and inflammation. Their role in Alzheimer's disease (AD) pathophysiology is yet unknown. In the current study, we aim to identify the association of isoprostanes and prostaglandins with the Amyloid, Tau, Neurodegeneration (ATN) biomarkers (Aβ-42, p-tau, and t-tau) of AD pathophysiology in mild cognitive impairment (MCI) subjects.

View Article and Find Full Text PDF

Photoactivated chemotherapy agents form a new branch of physically targeted anticancer agents with potentially lower systemic side effects for patients. On the other hand, limited information exists on the intracellular interactions between the photoreleased metal cage and the photoreleased anticancer inhibitor. In this work, we report a new biological study of the known photoactivated compound in the glioblastoma cancer cell line, U87MG.

View Article and Find Full Text PDF

Trimethylamine -oxide (TMAO) is a circulating microbiome-derived metabolite implicated in the development of atherosclerosis and cardiovascular disease (CVD). We investigated whether plasma levels of TMAO, its precursors (betaine, carnitine, deoxycarnitine, choline), and TMAO-to-precursor ratios are associated with clinical outcomes, including CVD and mortality. This was followed by an in-depth analysis of their genetic, gut microbial, and dietary determinants.

View Article and Find Full Text PDF

Since its first appearance, severe acute respiratory syndrome coronavirus 2 quickly spread around the world and the lack of adequate PCR testing capacities, especially during the early pandemic, led the scientific community to explore new approaches such as mass spectrometry (MS). We developed a proteomics workflow to target several tryptic peptides of the nucleocapsid protein. A highly selective multiple reaction monitoring-cubed (MRM) strategy provided a sensitivity increase in comparison to conventional MRM acquisition.

View Article and Find Full Text PDF

Circadian clock function declines with ageing, which can aggravate ageing-related diseases such as type 2 diabetes and neurodegenerative disorders. Understanding age-related changes in the circadian system at a systemic level can contribute to the development of strategies to promote healthy ageing. The goal of this study was to investigate the impact of ageing on 24-h rhythms in amine metabolites across four tissues in young (2 months of age) and old (22-25 months of age) mice using a targeted metabolomics approach.

View Article and Find Full Text PDF

Background: Sarcopenia is characterized by loss of skeletal muscle mass and function, and is a major risk factor for disability and independence in the elderly. Effective medication is not available. Dietary restriction (DR) has been found to attenuate aging and aging-related diseases, including sarcopenia, but the mechanism of both DR and sarcopenia are incompletely understood.

View Article and Find Full Text PDF

The severity of COVID-19 is linked to an imbalanced immune response. The dysregulated metabolism of small molecules and bioactive lipids has also been associated with disease severity. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyze over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers).

View Article and Find Full Text PDF

Hepatocytes are responsible for maintaining a stable blood glucose concentration during periods of nutrient scarcity. The breakdown of glycogen and de novo synthesis of glucose are crucial metabolic pathways deeply interlinked with lipid metabolism. Alterations in these pathways are often associated with metabolic diseases with serious clinical implications.

View Article and Find Full Text PDF

Signaling lipids (SLs) play a crucial role in various signaling pathways, featuring diverse lipid backbone structures. Emerging evidence showing the biological significance and biomedical values of SLs has strongly spurred the advancement of analytical approaches aimed at profiling SLs. Nevertheless, the dramatic differences in endogenous abundances across lipid classes as well as multiple isomers within the same lipid class makes the development of a generic analytical method challenging.

View Article and Find Full Text PDF

Vascular ageing is associated with increased arterial stiffness and cardiovascular mortality that might be linked to altered vascular energy metabolism. The aim of this study was to establish a Seahorse XFe96 Analyzer-based methodology for the reliable, functional assessment of mitochondrial respiration and glycolysis in single murine aortic rings and to validate this functional assay by characterising alterations in vascular energy metabolism in aged mice. Healthy young and old C57BL/6 mice were used for the analyses.

View Article and Find Full Text PDF

Untargeted metabolomics based on reverse phase LC-MS (RPLC-MS) plays a crucial role in biomarker discovery across physiological and disease states. Standardizing the development process of untargeted methods requires paying attention to critical factors that are under discussed or easily overlooked, such as injection parameters, performance assessment, and matrix effect evaluation. In this study, we developed an untargeted metabolomics method for plasma and fecal samples with the optimization and evaluation of these factors.

View Article and Find Full Text PDF

The increasing prevalence of IgE-mediated cow's milk allergy (CMA) in childhood is a worldwide health concern. There is a growing awareness that the gut microbiome (GM) might play an important role in CMA development. Therefore, treatment with probiotics and prebiotics has gained popularity.

View Article and Find Full Text PDF

Acyl-CoAs play a significant role in numerous physiological and metabolic processes making it important to assess their concentration levels for evaluating metabolic health. Considering the important role of acyl-CoAs, it is crucial to develop an analytical method that can analyze these compounds. Due to the structural variations of acyl-CoAs, multiple analytical methods are often required for comprehensive analysis of these compounds, which increases complexity and the analysis time.

View Article and Find Full Text PDF

The importance of lipids seen in studies of metabolism, cancer, the recent COVID-19 pandemic and other diseases has brought the field of lipidomics to the forefront of clinical research. Quantitative and comprehensive analysis is required to understand biological interactions among lipid species. However, lipidomic analysis is often challenging due to the various compositional structures, diverse physicochemical properties, and wide dynamic range of concentrations of lipids in biological systems.

View Article and Find Full Text PDF