Publications by authors named "Amy H Jeon"

Nucleolin is an essential cellular receptor to human respiratory syncytial virus (RSV). Pharmacological targeting of the nucleolin RNA binding domain RBD1,2 can inhibit RSV infections in vitro and in vivo; however, the site(s) on RBD1,2 which interact with RSV are not known. We undertook a series of experiments designed to: document RSV-nucleolin co-localization on the surface of polarized MDCK cells using immunogold electron microscopy, to identify domains on nucleolin that physically interact with RSV using biochemical methods and determine their biological effects on RSV infection in vitro, and to carry out structural analysis toward informing future RSV drug development.

View Article and Find Full Text PDF

γ-Secretase plays a pivotal role in the production of neurotoxic amyloid β-peptides (Aβ) in Alzheimer disease (AD) and consists of a heterotetrameric core complex that includes the aspartyl intramembrane protease presenilin (PS). The human genome codes for two presenilin paralogs. To understand the causes for distinct phenotypes of PS paralog-deficient mice and elucidate whether PS mutations associated with early-onset AD affect the molecular environment of mature γ-secretase complexes, quantitative interactome comparisons were undertaken.

View Article and Find Full Text PDF

Background: Signal peptide peptidase (SPP), a member of the presenilin-like intra-membrane cleaving aspartyl protease family, migrates on Blue Native (BN) gels as 100 kDa, 200 kDa and 450 kDa species. SPP has recently been implicated in other non-proteolytic functions such as retro-translocation of MHC Class I molecules and binding of misfolded proteins in the endoplasmic reticulum (ER). These high molecular weight SPP complexes might contain additional proteins that regulate the proteolytic activity of SPP or support its non-catalytic functions.

View Article and Find Full Text PDF

The time-controlled transcardiac perfusion crosslinking (tcTPC) method differs from conventional perfusion fixation in that the crosslinking reagent is administered throughout the circulatory system for only a relatively short period of time, thereby allowing limited crosslinking to occur. Bait protein complexes are isolated by affinity capture (AC) under stringent conditions and are recovered from the AC matrix by acidic elution. Affinity-purified proteins are reduced, alkylated, and digested with a specific endoproteinase, such as trypsin.

View Article and Find Full Text PDF

DJ-1 is a small but relatively abundant protein of unknown function that may undergo stress-dependent cellular translocation and has been implicated in both neurodegenerative diseases and cancer. As such, DJ-1 may be an excellent study object to elucidate the relative influence of the cellular context on its interactome and for exploring whether acute exposure to oxidative stressors alters its molecular environment. Using quantitative mass spectrometry, we conducted comparative DJ-1 interactome analyses from in vivo cross-linked brains or livers and from hydrogen peroxide-treated or naïve embryonic stem cells.

View Article and Find Full Text PDF

Mycobacteria use a unique system for covalently modifying proteins based on the conjugation of a small protein, referred to as prokaryotic ubiquitin-like protein (PUP). In this study, we report a proteome-wide analysis of endogenous pupylation targets in the model organism Mycobacterium smegmatis. On affinity capture, a total of 243 candidate pupylation targets were identified by two complementary proteomics approaches.

View Article and Find Full Text PDF

The physiological environment which hosts the conformational conversion of the cellular prion protein (PrP(C)) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrP(C) interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrP(C) paralogs.

View Article and Find Full Text PDF