Publications by authors named "Amy Gutierrez"

Summary: Genomics has become an essential technology for surveilling emerging infectious disease outbreaks. A range of technologies and strategies for pathogen genome enrichment and sequencing are being used by laboratories worldwide, together with different and sometimes ad hoc, analytical procedures for generating genome sequences. A fully integrated analytical process for raw sequence to consensus genome determination, suited to outbreaks such as the ongoing COVID-19 pandemic, is critical to provide a solid genomic basis for epidemiological analyses and well-informed decision making.

View Article and Find Full Text PDF

The rapid dissemination of SARS-CoV-2 has made COVID-19 a tremendous social, economic, and health burden. Despite the efforts to understand the virus and treat the disease, many questions remain unanswered about COVID-19 mechanisms of infection and progression. Severe Acute Respiratory Syndrome (SARS) infection can affect several organs in the body including the heart, which can result in thromboembolism, myocardial injury, acute coronary syndromes, and arrhythmias.

View Article and Find Full Text PDF

Many drugs that have been proposed for treatment of coronavirus disease 2019 (COVID-19) are reported to cause cardiac adverse events, including ventricular arrhythmias. In order to properly weigh risks against potential benefits, particularly when decisions must be made quickly, mathematical modeling of both drug disposition and drug action can be useful for predicting patient response and making informed decisions. Here, we explored the potential effects on cardiac electrophysiology of four drugs proposed to treat COVID-19: lopinavir, ritonavir, chloroquine, and azithromycin, as well as combination therapy involving these drugs.

View Article and Find Full Text PDF

Many drugs that have been proposed for treatment of COVID-19 are reported to cause cardiac adverse events, including ventricular arrhythmias. In order to properly weigh risks against potential benefits, particularly when decisions must be made quickly, mathematical modeling of both drug disposition and drug action can be useful for predicting patient response and making informed decisions. Here we explored the potential effects on cardiac electrophysiology of 4 drugs proposed to treat COVID-19: lopinavir, ritonavir, chloroquine, and azithromycin, as well as combination therapy involving these drugs.

View Article and Find Full Text PDF