Background: Classical swine fever (CSF) or hog cholera is a highly contagious swine viral disease. CSF endemic countries have to use routine vaccination with modified live virus (MLV) vaccines to prevent and control CSF. However, it is impossible to serologically differentiate MLV vaccinated pigs from those infected with CSF virus (CSFV).
View Article and Find Full Text PDFModified live virus (MLV) vaccines developed to protect against PRRSV circulating in North America (NA) offer limited protection to highly pathogenic (HP) PRRSV strains that are emerging in Asia. MLV vaccines specific to HP-PRRSV strains commercially available in China provide protection to HP-PRRSV; however, the efficacy of these HP-PRRSV vaccines to current circulating NA PRRS viruses has not been reported. The aim of this study is to investigate whether pigs vaccinated with attenuated Chinese HP-PRRSV vaccine (JXA1-R) are protected from infection by NA PRRSV strain NADC-20.
View Article and Find Full Text PDFMammary tumorigenesis and epithelial-mesenchymal transition (EMT) programs cooperate in converting transforming growth factor-β (TGF-β) from a suppressor to a promoter of breast cancer metastasis. Although previous reports associated β1 and β3 integrins with TGF-β stimulation of EMT and metastasis, the functional interplay and plasticity exhibited by these adhesion molecules in shaping the oncogenic activities of TGF-β remain unknown. We demonstrate that inactivation of β1 integrin impairs TGF-β from stimulating the motility of normal and malignant mammary epithelial cells (MECs) and elicits robust compensatory expression of β3 integrin solely in malignant MECs, but not in their normal counterparts.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in swine farms worldwide and is a major source of economic loss and animal suffering. Rapid genetic variation of PRRSV makes it difficult for current vaccines to confer protection against newly emerging strains. We recently demonstrated that a novel peptide nanofiber hydrogel (H9e) could act as a potent adjuvant for killed H1N1 vaccines.
View Article and Find Full Text PDFAim: To investigate whether caspase-1 activation/intracellular processing of pro-interleukin-1β (pro-IL-1β) and extracellular release of mature IL-1β from activated monocytes are separable events.
Methods: All experiments were performed on fresh or overnight cultured human peripheral blood monocytes (PBMCs) that were isolated from healthy donors. PBMCs were activated by lipopolysaccharide (LPS) stimulation before being treated with Adenosine triphosphate (ATP, 1 mmol/L), human α-defensin-5 (HD-5, 50 μg/mL), and/or nigericin (Nig, 30 μmol/L).
Cathelicidins form a family of small host defense peptides distinct from another class of cationic antimicrobial peptides, the defensins. They are expressed as large precursor molecules with a highly conserved pro-domain known as the cathelin-like domain (CLD). CLDs have high degrees of sequence homology to cathelin, a protein isolated from pig leukocytes and belonging to the cystatin family of cysteine protease inhibitors.
View Article and Find Full Text PDFBackground: IL-1β is a pleiotropic pro-inflammatory cytokine and its up-regulation is closely associated with various cancers including gastrointestinal tumors. However, it remains unclear how IL-1β may contribute to the initiation and development of these inflammation-associated cancers. Here we investigated the role of IL-1β in colon cancer stem cell (CSC) development.
View Article and Find Full Text PDFObjective: We investigated the effect of IL-1β on the development of intestinal epithelial stem cells.
Materials And Methods: Normal intestinal epithelial cell line IEC-18 cells were cultured in the presence or absence of 200 pM of IL-1β in serum-free medium (SFM) for various time periods. The effects of IL-1β on intestinal stem cell self-renewal and IEC-18 cell proliferation were evaluated by a colony formation assay, MTT assay, and a focus formation assay.
Synthetic glucocorticoids are widely used for treatment of many inflammatory diseases. However, long-term glucocorticoid treatment can cause a variety of negative side effects. A genome-wide microarray analysis was performed in human lung A549 cells to identify genes regulated by both the antiinflammatory steroid dexamethasone (Dex) and the proinflammatory cytokine TNFα.
View Article and Find Full Text PDFA highly pathogenic strain of porcine reproductive and respiratory syndrome virus (PRRSV), characterized by a discontinuous 30-amino-acid deletion in its Nsp2-coding region, has been emerging in China since 2006. Here, we report the complete genomic sequence of two novel Chinese virulent PRRSV variants with additional NSP2-gene deletions, which will help us understand the molecular and evolutionary characteristics of PRRSV in Asia.
View Article and Find Full Text PDFGlucocorticoids are stress hormones that maintain homeostasis through gene regulation mediated by nuclear receptors. We have discovered that other cellular stressors are integrated with glucocorticoid signaling through a new hormone-independent phosphorylation site, Ser134, on the human glucocorticoid receptor (GR). Ser134 phosphorylation is induced by a variety of stress-activating stimuli in a p38 mitogen-activated protein kinase (MAPK)-dependent manner.
View Article and Find Full Text PDFGlucocorticoids (GCs) are hormones naturally released when the body perceives stress and function to return homeostatic balance within various tissues. Synthetic GCs are widely prescribed therapeutics for the treatment of numerous inflammatory disorders and cancers. The effects of GCs are mediated by their binding and activation of the GC receptor (GR), a transcription factor that is subject to hormone-dependent and -independent phosphorylation on several serine and threonine residues.
View Article and Find Full Text PDFTransforming growth factor-beta (TGF-beta) is a ubiquitous cytokine with dual roles in tumor suppression and promotion, and these dichotomous functions have frustrated the development of therapies targeting oncogenic signaling by TGF-beta. In comparison, Abl is well established as an initiator of hematopoietic cancers; however, a clear role for Abl in regulating solid tumor development remains elusive. Here, we investigated the role of Abl in TGF-beta-mediated epithelial-mesenchymal transition (EMT) in normal and metastatic mammary epithelial cells (MECs).
View Article and Find Full Text PDFAberrant glycogen synthase kinase 3beta (GSK-3beta) activity is associated with the progression of several pathological conditions such as diabetes, Alzheimer's, and cancer. GSK-3beta regulates cellular processes by directly phosphorylating metabolic enzymes and transcription factors. Here, we discovered a new target for GSK-3beta phosphorylation: the human glucocorticoid receptor (GR).
View Article and Find Full Text PDFWe demonstrated previously that growth factor receptor-bound protein 2 (Grb2) associates with the transforming growth factor-beta (TGF-beta) type II receptor [TbetaR-II] upon its phosphorylation on Tyr284 by Src. Although this phosphotransferase reaction is critical in mediating TGF-beta stimulation of epithelial-mesenchymal transition (EMT) and invasion in mammary epithelial cells (MECs), the necessity of Grb2 in promoting these TGF-beta-dependent events remain purely correlative. Herein, we further evaluated the role of Grb2 in mediating the oncogenic activities of TGF-beta and show that the binding of Grb2 to TbetaR-II paralleled the induction of EMT in MECs stimulated by TGF-beta.
View Article and Find Full Text PDF