Class IA phosphoinositide 3-kinase (PI3K) galvanizes fundamental cellular processes such as migration, proliferation, and differentiation. To enable multifaceted roles, the catalytic subunit p110 utilizes a multidomain, regulatory subunit p85 through its inter SH2 domain (iSH2). In cell migration, their product PI(3,4,5)P generates locomotive activity.
View Article and Find Full Text PDFThe classic network of mitogen-activated protein kinases (MAPKs) is highly interconnected and controls a diverse array of biological processes. In multicellular eukaryotes, the MAPKs ERK, JNK, and p38 control opposing cell behaviors but are often activated simultaneously, raising questions about how input-output specificity is achieved. Here, we use multiplexed MAPK activity biosensors to investigate how cell fate control emerges from the connectivity and dynamics of the MAPK network.
View Article and Find Full Text PDFA large fraction of human cancers contain genetic alterations within the Mitogen Activated Protein Kinase (MAPK) signaling network that promote unpredictable phenotypes. Previous studies have shown that the temporal patterns of MAPK activity (i.e.
View Article and Find Full Text PDF