Publications by authors named "Amy F Perfors"

We consider the situation in which a learner must induce the rule that explains an observed set of data but the hypothesis space of possible rules is not explicitly enumerated or identified. The first part of the article demonstrates that as long as hypotheses are sparse (i.e.

View Article and Find Full Text PDF

In this paper we consider the "size principle" for featural similarity, which states that rare features should be weighted more heavily than common features in people's evaluations of the similarity between two entities. Specifically, it predicts that if a feature is possessed by n objects, the expected weight scales according to a 1/n law. One justification of the size principle emerges from a Bayesian analysis of simple induction problems (Tenenbaum & Griffiths, 2001), and is closely related to work by Shepard (1987) proposing universal laws for inductive generalization.

View Article and Find Full Text PDF