A novel class of Hsp90 inhibitors, structurally distinct from previously reported scaffolds, was developed from rational design and optimization of a compound library screen hit. These aminoquinazoline derivatives, represented by compound 15 (SNX-6833) or 1-(2-amino-4-methylquinazolin-7-yl)-3,6,6-trimethyl-6,7-dihydro-1H-indol-4(5H)-one, selectively bind to Hsp90 and inhibit its cellular activities at concentrations as low as single digit nanomolar.
View Article and Find Full Text PDFA chemoproteomics-based drug discovery strategy is presented that utilizes a highly parallel screening platform, encompassing more than 1000 targets, with a focused chemical library prior to target selection. This chemoproteomics-based process enables a data-driven selection of both the biological target and chemical hit after the screen is complete. The methodology has been exemplified for the purine binding proteome (proteins utilizing ATP, NAD, FAD).
View Article and Find Full Text PDFA novel class of heat shock protein 90 (Hsp90) inhibitors was developed from an unbiased screen to identify protein targets for a diverse compound library. These indol-4-one and indazol-4-one derived 2-aminobenzamides showed strong binding affinity to Hsp90, and optimized analogues exhibited nanomolar antiproliferative activity across multiple cancer cell lines. Heat shock protein 70 (Hsp70) induction and specific client protein degradation in cells on treatment with the inhibitors supported Hsp90 inhibition as the mechanism of action.
View Article and Find Full Text PDFIn the course of our Heat Shock 90 program, certain carbazole compounds were identified which had an off-target antiproliferative activity. To understand the off-target activity, we studied one analog with strong activity. We discovered that it had an effect on tubulin polymerization kinetics and was competitive with colchicine.
View Article and Find Full Text PDFObjective: To evaluate the ability of SNX-7081, a novel small molecule inhibitor of Hsp90, to block components of inflammation, including cytokine production, protein kinase activity, and angiogenic signaling. A close analog was evaluated in preclinical in vivo models of rheumatoid arthritis (RA).
Methods: SNX-7081 binding to Hsp90 was characterized in Jurkat cells and RA synovial fibroblasts (RASFs).
Hsp90 maintains the conformational stability of multiple proteins implicated in oncogenesis and has emerged as a target for chemotherapy. We report here the discovery of a novel small molecule scaffold that inhibits Hsp90. X-ray data show that the scaffold binds competitively at the ATP site on Hsp90.
View Article and Find Full Text PDF