Publications by authors named "Amy E Nielsen"

Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1-2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use.

View Article and Find Full Text PDF

Multidrug-Resistant (MDR) cancers attenuate chemotherapeutic efficacy through drug efflux, a process that transports drugs from within a cell to the extracellular space via ABC (ATP-Binding Cassette) transporters, including P-glycoprotein 1 (P-gp or ABCB1/MDR1). Conversely, Toll-Like Receptor (TLR) agonist immunotherapies modulate activity of tumor-infiltrating immune cells in local proximity to cancer cells and could, therefore, benefit from the enhanced drug efflux in MDR cancers. However, the effect of acquired drug resistance on TLR agonist efflux is largely unknown.

View Article and Find Full Text PDF

We have recently developed an enzyme-directed immunostimulant (EDI) prodrug motif, which is metabolized to active immunostimulant by cancer cells and, following drug efflux, activates nearby immune cells, resulting in immunogenicity. In this study, we synthesized several EDI prodrugs featuring an imidazoquinoline immunostimulant resiquimod (a Toll-like receptor 7/8 agonist) covalently modified with glycosidase enzyme-directing groups selected from substrates of β-glucuronidase, α-mannosidase, or β-galactosidase. We compared the glycosidase-dependent immunogenicity elicited by each EDI in RAW-Blue macrophages following conversion to active immunostimulant by complementary glycosidase.

View Article and Find Full Text PDF

Dysregulated vascular inflammation is the underlying cause of acute lung inflammation/injury (ALI). Bacterial infections and trauma cause ALI that may rapidly lead to acute respiratory distress syndrome (ARDS). There are no pharmacological therapies available to patients with ALI/ARDS, partially as drugs cannot specifically target the lungs.

View Article and Find Full Text PDF

Drug efflux and enzymatic drug degradation are two cellular mechanisms that contribute to drug resistance in many cancers. Herein, we report the synthesis and in vitro activity of a pro-immunostimulant that exploits both processes in tandem to selectively confer cancer-mediated immunogenicity. We demonstrate that an imidazoquinoline pro-immunostimulant is inactive until it is selectively metabolized to an active immunostimulant by an endogenous α-mannosidase enzyme expressed within multidrug-resistant cancer cells.

View Article and Find Full Text PDF

Synthetic agonists of innate immune cells are of interest to immunologists due to their synthesis from well-defined materials, optimized activity, and monodisperse chemical purity. These molecules are used in both prophylactic and therapeutic contexts from vaccines to cancer immunotherapies. In this review we highlight synthetic agonists that activate innate immune cells through three classes of pattern recognition receptors: NOD-like receptors, RIG-I-like receptors, and C-type lectin receptors.

View Article and Find Full Text PDF

Herein we report the synthesis and activity of an enzyme-directed immunostimulant with immune cell activation mediated by β-galactosidase, either exogenously added, or on B16 melanoma cells. Covalent attachment of a β-galactopyranoside to an imidazoquinoline immunostimulant at a position critical for activity resulted in a pro-immunostimulant that could be selectively converted by β-galactosidase into an active immunostimulant. The pro-immunostimulant exhibited β-galactosidase-directed immune cell activation as measured by NF-κB transcription in RAW-Blue macrophages or cytokine production (TNF, IL-6, IL-12) in JAWSII monocytes.

View Article and Find Full Text PDF