New antibiotics are urgently needed to address increasing rates of multidrug resistant infections. Seventy-six diversely functionalized compounds, comprising five structural scaffolds, were synthesized and tested for their ability to inhibit microbial growth. Twenty-six compounds showed activity in the primary phenotypic screen at the Community for Open Antimicrobial Drug Discovery (CO-ADD).
View Article and Find Full Text PDFKynurenic acid (KYNA) plays a significant role in maintaining normal brain function, and abnormalities in KYNA levels have been associated with various central nervous system disorders. Confirmation of its causality in human diseases requires safe and effective modulation of central KYNA levels in the clinic. The kynurenine aminotransferases (KAT) II enzyme represents an attractive target for pharmacologic modulation of central KYNA levels; however, KAT II and KYNA turnover kinetics, which could contribute to the duration of pharmacologic effect, have not been reported.
View Article and Find Full Text PDFIn 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization.
View Article and Find Full Text PDFThe kynurenine pathway is responsible for the metabolism of more than 95% of dietary tryptophan (TRP) and produces numerous bioactive metabolites. Recent studies have focused on three enzymes in this pathway: indoleamine dioxygenase (IDO1), kynurenine monooxygenase (KMO), and kynurenine aminotransferase II (KAT II). IDO1 inhibitors are currently in clinical trials for the treatment of cancer, and these agents may also have therapeutic utility in neurological disorders, including multiple sclerosis.
View Article and Find Full Text PDFThe elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease.
View Article and Find Full Text PDFThe structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a k(inact)/K(i) value of 112,000 M(-1)s(-1) and lipophilic efficiency (LipE) of 8.
View Article and Find Full Text PDFA series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure-activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate 4, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of k inact/K i to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles.
View Article and Find Full Text PDFEvidence suggests that compounds possessing both norepinephrine reuptake inhibition and 5-HT(1A) partial agonism (NRI/5-HT(1A)) activities may have a greater efficacy in treating neuropsychiatric disorders than compounds possessing either activity alone. The objectives of the present study were first to characterize the pharmacokinetic/pharmacodynamic (PK/PD) relationship of the plasma concentrations of atomoxetine (NRI) and buspirone (5-HT(1A) partial agonist), administered alone and in combination, on the prefrontal cortex dopamine levels in rats, and second to use the model developed to characterize the PK/PD relationship of novel NRI/5-HT(1A) compounds, PF-04269339 and PF-03529936, in a NRI/5-HT(1A) drug discovery program. Maximal dopamine elevation was twofold higher after administration of atomoxetine and buspirone in combination, PF-04269339, or PF-03529936 than after administration of atomoxetine or buspirone alone.
View Article and Find Full Text PDFKynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site.
View Article and Find Full Text PDFWe describe a generalized approach to stereocontrolled synthesis of substituted cyclic hydroxamic acids (3-amino-1-hydroxy-3,4-dihydroquinolinones) by selective reduction of substituted 2-nitrophenylalanine substrates. Compounds in this series have antibacterial properties and have also recently been reported as KAT II inhibitors. The key nitrophenyl alanine intermediates are prepared enantioselectively in excellent yield by phase transfer catalyzed alkylation of the corresponding nitrobenzyl bromides.
View Article and Find Full Text PDFCompounds with combined norepinephrine reuptake inhibitor (NRI) and serotonin 1A (5-HT(1A)) partial agonist pharmacology may offer a new therapeutic approach for treating symptoms of neuropsychiatric disorders including ADHD, depression, and anxiety. Herein we describe the design and optimization of novel chemical matter that exhibits favorable dual NRI and 5-HT(1A) partial agonist activity. Lead compounds in this series were found to be devoid of activity at the dopamine transporter and were shown to be brain penetrant with high receptor occupancy.
View Article and Find Full Text PDFPreclinical studies suggest that compounds with dual norepinephrine reuptake inhibitor (NRI) and 5-HT(1A) partial agonist properties may provide an important new therapeutic approach to ADHD, depression, and anxiety. Reported herein is the discovery of a novel chemical series with a favorable NRI and 5-HT(1A) partial agonist pharmacological profile as well as excellent selectivity for the norepinephrine transporter over the dopamine transporter.
View Article and Find Full Text PDFCompounds that are both norepinephrine reuptake inhibitors (NRI) and 5-HT1(A) partial agonists may have the potential to treat neuropsychiatric disorders including attention deficit hyperactivity disorder (ADHD) and depression. Targeted screening of NRI-active compounds for binding to the 5-HT(1A) receptor provided a series of thiomorpholinone hits with this dual activity profile. Several iterations of design, synthesis, and testing led to substituted piperidine diphenyl ethers which are potent NRIs with 5-HT1(A) partial agonist properties.
View Article and Find Full Text PDFAminopyrimidine 2 (4-(1-(2-(1H-indol-3-yl)ethyl)piperidin-3-yl)-N-cyclopropylpyrimidin-2-amine) emerged from a high throughput screen as a novel 5-HT(1A) agonist. This compound showed moderate potency for 5-HT(1A) in binding and functional assays, as well as moderate metabolic stability. Implementation of a strategy for improving metabolic stability by lowering the lipophilicity (cLogD) led to identification of methyl ether 31 (4-(1-(2-(1H-indol-3-yl)ethyl)piperidin-3-yl)-N-(2-methoxyethyl)pyrimidin-2-amine) as a substantially improved compound within the series.
View Article and Find Full Text PDFA 1,2,3,4-tetrahydro-9a,4a-(iminoethano)-9H-carbazole (4) is a central structural feature of the Strychnos alkaloid minfiensine (1) and akuammiline alkaloids such as vincorine (5) and echitamine (6). A cascade catalytic asymmetric Heck-iminium cyclization was developed that rapidly provides 3,4-dihydro-9a,4a-(iminoethano)-9H-carbazoles in high enantiomeric purity. Two sequences were developed for advancing 3,4-dihydro-9a,4a-(iminoethano)-9H-carbazole 27 to (+)-minfiensine.
View Article and Find Full Text PDFA catalytic asymmetric method for the chemical synthesis of alkaloids containing the 1,2,3,4-tetrahydro-9a,4a-(iminoethano)-9H-carbazole (1) moiety is reported and verified by the enantioselective total synthesis of (+)-minfiensine (4). The central step in this total synthesis is the sequential catalytic asymmetric Heck-N-acyliminium ion cyclization of dienyl carbamate triflate 10, prepared in six steps from 1,2-cyclohexanedione, to give enantiopure 3,4-dihydro-9a,4a-(iminoethano)-9H-carbazole (12) in 75% yield. Iminoethano-9H-carbazole 12 is transformed in six steps to dienyl iodide 17, which undergoes diastereoselective intramolecular Heck cyclization to form pentacyclic intermediate 18.
View Article and Find Full Text PDFA practical sequence involving three consecutive palladium(0)-catalyzed reactions has been developed for synthesizing 3-alkyl-3-aryloxindoles in high enantiopurity. The Heck cyclization precursors 10 and 11a-k are generated in one step by chemoselective Stille cross-coupling of 2'-triflato-(Z)-2-stannyl-2-butenanilide 9 with aryl or heteroaryl iodides. The pivotal catalytic asymmetric Heck cyclization step of this sequence takes place in high yield and with high enantioselectivity (71-98% ee) with the Pd-BINAP catalyst derived from Pd(OAc)(2) to construct oxindoles containing a diaryl-substituted all-carbon quaternary carbon center.
View Article and Find Full Text PDF