Glyphosate-based weed killers such as Roundup have been implicated in detrimental effects on single- and multicellular eukaryotic model organism health and longevity. However, the mode(s) of action for these effects are currently unknown. In this study, we investigate the impact of exposure to Roundup on two model organisms: Saccharomyces cerevisiae and Caenorhabditis elegans and test the hypothesis that exposure to Roundup decreases transcription fidelity.
View Article and Find Full Text PDFMeiotic recombination is both a fundamental biological process required for proper chromosomal segregation during meiosis and an important genomic parameter that shapes major features of the genomic landscape. However, despite the central importance of this phenotype, we lack a clear understanding of the selective pressures that shape its variation in natural populations, including humans. While there is strong evidence of fitness costs of low rates of recombination, the possible fitness costs of high rates of recombination are less defined.
View Article and Find Full Text PDFMother's Curse alleles represent a significant source of potential male fitness defects. The maternal inheritance of mutations with the pattern of sex-specific fitness effects, s♀>0>s♂, allows Mother's Curse alleles to spread through a population even though they reduce male fitness. Although the mitochondrial genomes of animals contain only a handful of protein-coding genes, mutations in many of these genes have been shown to have a direct effect on male fertility.
View Article and Find Full Text PDFMany species have separate haploid and diploid phases. Theory predicts that each phase should experience the effects of evolutionary forces (like selection) differently. In the haploid phase, all fitness-affecting alleles are exposed to selection, whereas in the diploid phase, those same alleles can be masked by homologous alleles.
View Article and Find Full Text PDFMany animal species are haplodiploid: their fertilized eggs develop into diploid females and their unfertilized eggs develop into haploid males. The unique genetic features of haplodiploidy raise the prospect that these systems can be used to disentangle the population genetic consequences of haploid and diploid selection. To this end, sex-specific reproductive genes are of particular interest because, while they are shared within the same genome, they consistently experience selection in different ploidal environments.
View Article and Find Full Text PDFEvolutionary genomic studies find that reproductive protein genes, those directly involved in reproductive processes, diversify more rapidly than most other gene categories. Strong postcopulatory sexual selection acting within species is the predominant hypothesis proposed to account for the observed pattern. Recently, relaxed selection due to sex-specific gene expression has also been put forward to explain the relatively rapid diversification.
View Article and Find Full Text PDFMeiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing-over. However, the genetic basis of this divergence is poorly understood.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2017
Meiotic recombination is necessary for successful gametogenesis in most sexually reproducing organisms and is a fundamental genomic parameter, influencing the efficacy of selection and the fate of new mutations. The molecular and evolutionary functions of recombination should impose strong selective constraints on the range of recombination rates. Yet, variation in recombination rate is observed on a variety of genomic and evolutionary scales.
View Article and Find Full Text PDFIn some species, meiotic recombination is concentrated in small genomic regions. These "recombination hotspots" leave signatures in fine-scale patterns of linkage disequilibrium, raising the prospect that the genomic landscape of hotspots can be characterized from sequence variation. This approach has led to the inference that hotspots evolve rapidly in some species, but are conserved in others.
View Article and Find Full Text PDFSynthetic gene drives based on CRISPR/Cas9 have the potential to control, alter, or suppress populations of crop pests and disease vectors, but it is unclear how they will function in wild populations. Using genetic data from four populations of the flour beetle , we show that most populations harbor genetic variants in Cas9 target sites, some of which would render them immune to drive (ITD). We show that even a rare ITD allele can reduce or eliminate the efficacy of a CRISPR/Cas9-based synthetic gene drive.
View Article and Find Full Text PDFIt is widely established that proteins involved in reproduction diverge between species more quickly than other proteins. For male sperm proteins, rapid divergence is believed to be caused by postcopulatory sexual selection and/or sexual conflict. Here, we derive the expected levels of gene diversity within populations and divergence between them for male sperm protein genes evolving by postcopulatory, prezygotic fertility competition, i.
View Article and Find Full Text PDFCaedibacter varicaedens is a kappa killer endosymbiont bacterium of the ciliate Paramecium biaurelia. Here, we present the draft genome sequence of C. varicaedens.
View Article and Find Full Text PDFThe ubiquity of recombination in nature is a paradox because it breaks up combinations of alleles favored by natural selection. Theoretical work has shown that antagonistic coevolution between hosts and parasites can result in rapid fluctuations in epistasis that can create a short-term advantage to recombination. Here, we show that another kind of antagonistic coevolution, interlocus sexually antagonistic coevolution (SAC), can also create indirect selection for modifiers that increase the rate of recombination, and that it can lead to very high levels of recombination at equilibrium.
View Article and Find Full Text PDFWe examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication.
View Article and Find Full Text PDF