Publications by authors named "Amy D Roeder"

Forensic laboratories routinely perform STR analyses using commercially available STR kits. Very low levels of DNA are extracted from many forensic samples. In these samples, the amount of DNA that can be placed in a PCR is below the optimal DNA range for the commercial kits, leading to weak profiles and allelic dropout.

View Article and Find Full Text PDF

RNA analysis is a valuable tool for the identification of the forensically relevant body fluids, saliva, blood, menstrual blood, cervicovaginal fluid, and semen. Multiple human mRNA and bacterial RNA markers have been identified for each of these body fluids. RNA and DNA can be coextracted from the same portion of a sample and RNA markers for different body fluids can be multiplexed in a single PCR, thereby maximizing the number of analyses that can be performed with limited sample material.

View Article and Find Full Text PDF

Messenger RNA (mRNA) expression varies among cell types; therefore, analyses for the presence of particular mRNAs can be used to identify biological fluids in forensic samples. For this work, several novel markers were characterized for saliva, cervicovaginal fluid (CVF), blood, and menstrual blood (MB). The new markers were used in combination with previously described markers to develop four multiplex polymerase chain reaction assays.

View Article and Find Full Text PDF

It is now well established that the human immunodeficiency viruses, HIV-1 and HIV-2, are the results of cross-species transmissions of simian immunodeficiency viruses (SIV) naturally infecting nonhuman primates in sub-Saharan Africa. SIVs are found in many African primates, and humans continue to be exposed to these viruses by hunting and handling primate bushmeat. Sooty mangabeys () and western red colobus () are infected with SIV at a high rate in the Taï Forest, Côte d'Ivoire.

View Article and Find Full Text PDF

Many genetic studies on catarrhines use microsatellite markers that were isolated from human DNA. A large number of these markers have been characterized in the great apes, macaques and baboons. However, there are few or no markers available for other members of this group.

View Article and Find Full Text PDF

Obtaining genetic profiles from samples containing minimal amounts of DNA can be difficult. In forensic science, the vast majority of genetic profiles are generated using commercial kits that have been optimized for the amplification of a specific range of DNA concentrations. DNA extracted from many forensic samples falls below the kit manufacturers' specified concentrations either because there is not enough total DNA in the extract or the extract is so dilute that not enough volume of the extract can be added to the PCR.

View Article and Find Full Text PDF

Numerous African primates are infected with simian immunodeficiency viruses (SIVs). It is now well established that the clade of SIVs infecting west-central African chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) represent the progenitors of human immunodeficiency virus type 1 (HIV-1), whereas HIV-2 results from different cross-species transmissions of SIVsmm from sooty mangabeys (Cercocebus atys atys). We present here the first molecular epidemiological survey of simian immunodeficiency virus (SIVwrc) in wild-living western red colobus monkeys (Piliocolobus badius badius) which are frequently hunted by the human population and represent a favourite prey of western chimpanzees (Pan troglodytes verus).

View Article and Find Full Text PDF

DNA profiling with microsatellite markers is a commonly used genetic method of studying the great apes. An efficient method of generating the genetic data is amplification of multiple microsatellites in a single PCR reaction. Here we describe a PCR multiplex in which 9 genetic markers can be amplified simultaneously, thereby saving time, expenses and DNA.

View Article and Find Full Text PDF

Recent experiments using sperm typing have demonstrated that, in several regions of the human genome, recombination does not occur uniformly but instead is concentrated in "hotspots" of 1-2 kb. Moreover, the crossover asymmetry observed in a subset of these has led to the suggestion that hotspots may be short-lived on an evolutionary time scale. To test this possibility, we focused on a region known to contain a recombination hotspot in humans, TAP2, and asked whether chimpanzees, the closest living evolutionary relatives of humans, harbor a hotspot in a similar location.

View Article and Find Full Text PDF

Mutations in TBX5, a T-box-containing transcription factor, cause cardiac and limb malformations in individuals with Holt-Oram syndrome (HOS). Mutations that result in haploinsufficiency of TBX5 are purported to cause cardiac and limb defects of similar severity, whereas missense mutations, depending on their location in the T box, are thought to cause either more severe heart or more severe limb abnormalities. These inferences are, however, based on the analysis of a relatively small number of independent cases of HOS.

View Article and Find Full Text PDF