Publications by authors named "Amy Cuthbert"

Blockade of co-stimulatory signals to T cells is extremely effective for the induction of transplantation tolerance in immunologically naive rodents. However, infections and inflammation compromise the efficacy of co-stimulation blockade regimens for the induction of tolerance, thereby stimulating the rejection of allografts. Previous studies have shown that stimulation of innate immunity abrogates tolerance induction by preventing the deletion of alloreactive CD8(+) T cells that normally occurs during co-stimulation blockade.

View Article and Find Full Text PDF

Objective: To create an immunodeficient mouse model that spontaneously develops hyperglycemia to serve as a diabetic host for human islets and stem cell-derived beta-cells in the absence or presence of a functional human immune system.

Research Design And Methods: We backcrossed the Ins2(Akita) mutation onto the NOD-Rag1(null) IL2rgamma(null) strain and determined 1) the spontaneous development of hyperglycemia, 2) the ability of human islets, mouse islets, and dissociated mouse islet cells to restore euglycemia, 3) the generation of a human immune system following engraftment of human hematopoietic stem cells, and 4) the ability of the humanized mice to reject human islet allografts.

Results: We confirmed the defects in innate and adaptive immunity and the spontaneous development of hyperglycemia conferred by the IL2rgamma(null), Rag1(null), and Ins2(Akita) genes in NOD-Rag1(null) IL2rgamma(null) Ins2(Akita) (NRG-Akita) mice.

View Article and Find Full Text PDF

"Humanized" mouse models created by engraftment of immunodeficient mice with human hematolymphoid cells or tissues are an emerging technology with broad appeal across multiple biomedical disciplines. However, investigators wishing to utilize humanized mice with engrafted functional human immune systems are faced with a myriad of variables to consider. In this study, we analyze HSC engraftment methodologies using three immunodeficient mouse strains harboring the IL2rgamma(null) mutation; NOD-scid IL2rgamma(null), NOD-Rag1(null) IL2rgamma(null), and BALB/c-Rag1(null) IL2rgamma(null) mice.

View Article and Find Full Text PDF

Background: Treatment with anti-CD154 monoclonal antibody (mAb) plus a donor-specific transfusion (DST) of spleen cells prolongs skin allograft survival in mice through a mechanism involving deletion of host alloreactive CD8(+) T cells. It is unknown if other lymphohematopoietic cell populations can be used as a DST.

Methods: Murine recipients of allogeneic skin grafts on day 0 were either untreated or given a DST on day -7 plus 4 doses of anti-CD154 mAb on days -7, -4, 0, and +4.

View Article and Find Full Text PDF

Background: Donor-specific transfusion (DST) and a brief course of anti-CD154 monoclonal antibody (mAb) induces permanent islet and prolonged skin allograft survival in mice. Induction of skin allograft survival requires the presence of CD4 cells and deletion of alloreactive CD8 cells. The specific roles of CD4 and CD4CD25 cells and the mechanism(s) by which they act are not fully understood.

View Article and Find Full Text PDF