Objectives: This study aimed to present an innovative method for synthesizing pH-thermo-glucose responsive poly(NIPA--DMAEMA)-PBA hydrogel nanoparticles via single-step aqueous free radical polymerization.
Methods: The synthesis process involved free radical polymerization in an aqueous solution, and the resulting nanoparticles were characterized for their physical and chemical properties by H NMR, Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM). Insulin-loaded poly(NIPA--DMAEMA)-PBA hydrogel nanoparticles were prepared and evaluated for their insulin capture and release properties at different pH and temperature, in addition to different glucose concentrations, with the release profile of insulin quantitatively evaluated using the Bradford method.
The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma.
View Article and Find Full Text PDFThe field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers.
View Article and Find Full Text PDFMucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses.
View Article and Find Full Text PDFVarious aquatic dissolved organic matter (DOM) samples produce singlet oxygen (1O2) and hydrogen peroxide (H2O2) with quantum yields of 0.59 to 4.5% (1O2 at 365 nm) and 0.
View Article and Find Full Text PDF