The inability of CD8+ effector T cells (Teffs) to reach tumor cells is an important aspect of tumor resistance to cancer immunotherapy. The recruitment of these cells to the tumor microenvironment (TME) is regulated by integrins, a family of adhesion molecules that are expressed on T cells. Here, we show that 7HP349, a small-molecule activator of lymphocyte function-associated antigen-1 (LFA-1) and very late activation antigen-4 (VLA-4) integrin cell-adhesion receptors, facilitated the preferential localization of tumor-specific T cells to the tumor and improved antitumor response.
View Article and Find Full Text PDFLeukocyte inflammatory responses require integrin cell-adhesion molecule signaling through spleen tyrosine kinase (Syk), a non-receptor kinase that binds directly to integrin β-chain cytoplasmic domains. Here, we developed a high-throughput screen to identify small molecule inhibitors of the Syk-integrin cytoplasmic domain interactions. Screening small molecule compound libraries identified the β-lactam antibiotics cefsulodin and ceftazidime, which inhibited integrin β-subunit cytoplasmic domain binding to the tandem SH2 domains of Syk (IC range, 1.
View Article and Find Full Text PDFInflammation drives the degradation of atherosclerotic plaque, yet there are no non-invasive techniques available for imaging overall inflammation in atherosclerotic plaques, especially in the coronary arteries. To address this, we have developed a clinically relevant system to image overall inflammatory cell burden in plaque. Here, we describe a targeted contrast agent (THI0567-targeted liposomal-Gd) that is suitable for magnetic resonance (MR) imaging and binds with high affinity and selectivity to the integrin α4β1(very late antigen-4, VLA-4), a key integrin involved in recruiting inflammatory cells to atherosclerotic plaques.
View Article and Find Full Text PDFActivation of the integrin family of cell adhesion receptors on progenitor cells may be a viable approach to enhance the effects of stem cell-based therapies by improving cell retention and engraftment. Here, we describe the synthesis and characterization of the first small molecule agonist identified for the integrin α4β1 (also known as very late antigen-4 or VLA-4). The agonist, THI0019, was generated via two structural modifications to a previously identified α4β1 antagonist.
View Article and Find Full Text PDFThe molecular mechanisms that regulate the endothelial response during transendothelial migration (TEM) of invasive cancer cells remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) has been implicated in the disruption of endothelial cell adherens junctions and in the diapedesis of metastatic cancer cells. We sought to determine the signaling mechanisms underlying the disruption of endothelial adherens junctions after the attachment of invasive breast cancer cells.
View Article and Find Full Text PDFA key issue regarding the use of stem cells in cardiovascular regenerative medicine is their retention in target tissues. Here, we have generated and assessed a bispecific antibody heterodimer designed to improve the retention of bone-marrow-derived multipotent stromal cells (BMMSC) in cardiac tissue damaged by myocardial infarction. The heterodimer comprises an anti-human CD90 monoclonal antibody (mAb) (clone 5E10) and an anti-myosin light chain 1 (MLC1) mAb (clone MLM508) covalently cross-linked by a bis-arylhydrazone.
View Article and Find Full Text PDFThe development of antagonists to the α4 integrin family of cell adhesion molecules has been an active area of pharmaceutical research to treat inflammatory and autoimmune diseases. Presently being tested in human clinical trials are compounds selective for α4β1 (VLA-4) as well as several dual antagonists that inhibit both α4β1 and α4β7. The value of a dual versus a selective small molecule antagonist as well as the consequences of inhibiting different affinity states of the α4 integrins have been debated in the literature.
View Article and Find Full Text PDF