Proc Natl Acad Sci U S A
September 2022
Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones.
View Article and Find Full Text PDFProstephanus truncatus (Horn) (Coleoptera: Bostrichidae), is a beetle that is a member of a family that is primarily comprised of wood-boring insects, including forest insect pests. It is native to Mexico and Central America, where it has adapted to become a pest of stored maize. It was accidentally introduced into Africa in late 1970s, where it quickly spread throughout the sub-Saharan region, perhaps aided by adaptation to alternate hosts and the ability to persist in non-agricultural habitats.
View Article and Find Full Text PDFPopulation responses to environmental extremes often dictate the bounds to species' distributions. However, population dynamics at, or near, those range limits may also be affected by sublethal effects. We exposed late instars and pupae of an invasive leafroller, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), to cold temperatures and measured the effects of exposure on subsequent survivorship, development, and reproduction.
View Article and Find Full Text PDFWhile many insects cannot survive the formation of ice within their bodies, a few species can. On the evolutionary continuum from freeze-intolerant (i.e.
View Article and Find Full Text PDFGenetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density.
View Article and Find Full Text PDFSweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..
View Article and Find Full Text PDF