Publications by authors named "Amy C Madl"

Dry eye disease (DED) affects more than 100 million people worldwide, causing significant patient discomfort and imposing a multi-billion-dollar burden on global health care systems. In DED patients, the natural biolubrication process that facilitates pain-free blinking goes awry due to an imbalance of lipids, aqueous medium, and mucins in the tear film, resulting in ocular surface damage. Identifying strategies to reduce adhesion and shear stresses between the ocular surface and the conjunctival cells lining the inside of the eyelid during blink cycles is a promising approach to improve the signs and symptoms of DED.

View Article and Find Full Text PDF

Over 6.2 million people worldwide suffer from moderate to severe vision loss due to corneal disease. While transplantation with allogenic donor tissue is sight-restoring for many patients with corneal blindness, this treatment modality is limited by long waiting lists and high rejection rates, particularly in patients with severe tissue damage and ocular surface pathologies.

View Article and Find Full Text PDF

Dry eye disease (DED) has high personal and societal costs, but its pathology remains elusive due to intertwined biophysical and biochemical processes at the ocular surface. Specifically, mucin deficiency is reported in a subset of DED patients, but its effects on ocular interfacial properties remain unclear. Herein a novel in vitro mucin-deficient mimetic ocular surface (Mu-DeMOS) with a controllable amount of membrane-tethered mucin molecules is developed to represent the diseased ocular surfaces.

View Article and Find Full Text PDF

Recent efforts to develop hydrogel biomaterials have focused on better recapitulating the dynamic properties of the native extracellular matrix. In hydrogel biomaterials, binding thermodynamics and cross-link kinetics directly affect numerous bulk dynamic properties such as strength, stress relaxation, and material clearance. However, despite the broad range of bulk dynamic properties observed in biological tissues, present strategies to incorporate dynamic linkages in cell-encapsulating hydrogels rely on a relatively small number of dynamic covalent chemical reactions and host-guest interactions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpqmjbuu60scjuk45br0kjakjflasop08): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once