Methods Mol Biol
September 2021
The UltraPlex method for multiplexed two-dimensional fluorescent immunohistochemistry is described, in which hapten tags conjugated to primary antibodies facilitate multiplexed imaging of four or more antigens per tissue section at once. Anti-hapten secondary antibodies labeled with fluorophores provide amplified signal for detection, which is accomplished using a standard fluorescent microscope or digital slide scanner. The protocol is rapid and straightforward and utilizes conventionally prepared tissue samples.
View Article and Find Full Text PDFMultiplexed tissue tomography enables comprehensive spatial analysis of markers within a whole tissue or thick tissue section. Clearing agents are often used to make tissue transparent and facilitate deep tissue imaging. Many methods of clearing and tissue tomography are currently used in a variety of tissue types.
View Article and Find Full Text PDFThe metabolic reprogramming associated with characteristic increases in glucose and glutamine metabolism in advanced cancer is often ascribed to answering a higher demand for metabolic intermediates required for rapid tumor cell growth. Instead, recent discoveries have pointed to an alternative role for glucose and glutamine metabolites as cofactors for chromatin modifiers and other protein posttranslational modification enzymes in cancer cells. Beyond epigenetic mechanisms regulating gene expression, many chromatin modifiers also modulate DNA repair, raising the question whether cancer metabolic reprogramming may mediate resistance to genotoxic therapy and genomic instability.
View Article and Find Full Text PDFAt their proliferative limit, normal cells arrest and undergo replicative senescence, displaying large cell size, flat morphology, and senescence-associated beta-galactosidase (SA--Gal) activity. Normal or tumor cells exposed to genotoxic stress undergo therapy-induced senescence (TIS), displaying a similar phenotype. Senescence is considered a DNA damage response, but cellular heterogeneity has frustrated identification of senescence-specific markers and targets.
View Article and Find Full Text PDFDespite significant advances in combinations of radiotherapy and chemotherapy, altered fractionation schedules and image-guided radiotherapy, many cancer patients fail to benefit from radiation. A prevailing hypothesis is that targeting repair of DNA double strand breaks (DSB) can enhance radiation effects in the tumor and overcome therapeutic resistance without incurring off-target toxicities. Unrepaired DSBs can block cancer cell proliferation, promote cancer cell death, and induce cellular senescence.
View Article and Find Full Text PDFRadiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro.
View Article and Find Full Text PDFMultiparametric flow cytometry offers a powerful approach to single-cell analysis with broad applications in research and diagnostics. Despite advances in instrumentation, progress in methodology has lagged. Currently there is no simple and efficient method for antibody labeling or quantifying the number of antibodies bound per cell.
View Article and Find Full Text PDF