Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell-mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin-expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality.
View Article and Find Full Text PDFRegulatory T (Treg) cells pose a major barrier to effective anti-tumor immunity. Although Treg cell depletion enhances tumor rejection, the ensuing autoimmune sequelae limits its utility in the clinic and highlights the need for limiting Treg cell activity within the tumor microenvironment. Interleukin-35 (IL-35) is a Treg cell-secreted cytokine that inhibits T cell proliferation and function.
View Article and Find Full Text PDFGraft versus host disease (GVHD) is the major complication of allogeneic hematopoietic stem cell transplantation. GVHD is characterized by an imbalance between the effector and regulatory arms of the immune system which results in the over production of inflammatory cytokines. Moreover, there is a persistent reduction in the number of regulatory T (Treg) cells which limits the ability of the immune system to re-calibrate this proinflammatory environment.
View Article and Find Full Text PDFRegulatory T cells (Tregs), in particular CD4(+) Foxp3(+) T cells, have been shown to play an important role in the maintenance of tolerance after allogeneic stem cell transplantation. In the current study, we have identified a population of CD8(+) Foxp3(+) T cells that are induced early during graft-versus-host disease (GVHD), constitute a significant percentage of the entire Treg population, and are present in all major GVHD target organs. These cells expressed many of the same cell surface molecules as found on CD4(+) Tregs and potently suppressed in vitro alloreactive T cell responses.
View Article and Find Full Text PDFPurpose: Graft versus host disease (GVHD) is the major complication of allogeneic bone marrow transplantation (BMT) and limits the therapeutic efficacy of this modality. Although the role of natural T-regulatory cells (nTreg) in attenuating GVHD has been extensively examined, the ability of induced T-regulatory cells (iTreg) to mitigate GVHD is unknown. The purpose of this study was to examine the ability of in vitro and in vivo iTregs to abrogate GVHD.
View Article and Find Full Text PDFGraft-versus-host disease (GVHD) is the major complication after allogeneic bone marrow transplantation and is characterized by the overproduction of proinflammatory cytokines. In this study, we have identified interleukin-6 (IL-6) as a critical inflammatory cytokine that alters the balance between the effector and regulatory arms of the immune system and drives a proinflammatory phenotype that is a defining characteristic of GVHD. Our results demonstrate that inhibition of the IL-6 signaling pathway by way of antibody-mediated blockade of the IL-6 receptor (IL-6R) markedly reduces pathologic damage attributable to GVHD.
View Article and Find Full Text PDFGrowth factors such as glial cell line-derived neurotrophic factor (GDNF) have been shown to prevent neurodegeneration and promote regeneration in many animal models of Parkinson's disease (PD). Insulin-like growth factor 1 (IGF-1) is also known to have neuroprotective effects in a number of disease models but has not been extensively studied in models of PD. We produced human neural progenitor cells (hNPC) releasing either GDNF or IGF-1 and transplanted them into a rat model of PD.
View Article and Find Full Text PDF