Publications by authors named "Amy Anzelon-Mills"

The inositol phosphatases phosphatase and tensin homologue (PTEN) and Src homology 2 domain-containing inositol phosphatase (SHIP) negatively regulate phosphatidylinositol-3-kinase (PI3K)-mediated growth, survival, and proliferation of hematopoietic cells. Although deletion of PTEN in mouse T cells results in lethal T cell lymphomas, we find that animals lacking PTEN or SHIP in B cells show no evidence of malignancy. However, concomitant deletion of PTEN and SHIP (bPTEN/SHIP(-/-)) results in spontaneous and lethal mature B cell neoplasms consistent with marginal zone lymphoma or, less frequently, follicular or centroblastic lymphoma.

View Article and Find Full Text PDF

Mice lacking activity of the kinase MEKK1 ('Map3k1(deltaKD)' mice) have defective activation of the kinase Jnk and increased production of T helper type 2 cytokines after T cell receptor ligation. Here we show that Map3k1(deltaKD) mice had defective germinal center formation and diminished production of antibodies recognizing thymus-dependent antigens. Those defects were B cell intrinsic, as MEKK1 was necessary for CD40-mediated activation of the kinases Jnk and p38 and transcription factor c-Jun, as well as for expression of cyclin D2 and activation-induced deaminase.

View Article and Find Full Text PDF

Class-switch recombination (CSR) is essential for humoral immunity. However, the regulation of CSR is not completely understood. Here we demonstrate that phosphatidylinositol 3-kinase (PI3K) actively suppressed the onset and frequency of CSR in primary B cells.

View Article and Find Full Text PDF

Expression of B cell-activating factor (BAFF), a critical B cell survival factor, is elevated in autoimmune and lymphoproliferative disorders. Mice overproducing BAFF develop systemic lupus erythematosus (SLE)-like disease and exhibit B cell activation of classical and alternative NF-kappaB-signaling pathways. We used a genetic approach and found that both NF-kappaB-signaling pathways contributed to disease development but act through distinct mechanisms.

View Article and Find Full Text PDF