Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, (). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling , yet almost nothing is known about the roles of skin-resident immune cells in anti- defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) downregulates immune surface markers to avoid immune recognition. Pomalidomide (Pom) was previously shown to increase immune surface marker expression in EBV-infected tumor cells. We explored the mechanism by which Pom leads to these effects in EBV-infected cells.
View Article and Find Full Text PDFMacrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians.
View Article and Find Full Text PDFThe amphibian declines are compounded by emerging pathogens that often preferentially target distinct amphibian developmental stages. While amphibian immune responses remain relatively unexplored, macrophage (Mφ)-lineage cells are believed to be important to both amphibian host defenses and to their pathogen infection strategies. As such, a greater understanding of tadpole and adult amphibian Mφ functionality is warranted.
View Article and Find Full Text PDFInfections by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to global amphibian decline. The frog is an ideal research platform upon which to study the roles of distinct frog leukocyte populations during FV3 infections. Frog macrophages (MΦs) are integrally involved during FV3 infection, as they facilitate viral dissemination and persistence but also participate in immune defense against this pathogen.
View Article and Find Full Text PDFThe global amphibian declines are compounded by ranavirus infections such as Frog Virus 3 (FV3), and amphibian tadpoles more frequently succumb to these pathogens than adult animals. Amphibian gastrointestinal tracts represent a major route of ranavirus entry, and viral pathogenesis often leads to hemorrhaging and necrosis within this tissue. Alas, the differences between tadpole and adult amphibian immune responses to intestinal ranavirus infections remain poorly defined.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), encodes two proteases required for replication. The main protease (M), encoded as part of two polyproteins, pp1a and pp1ab, is responsible for 11 different cleavages of these viral polyproteins to produce mature proteins required for viral replication. M is therefore an attractive target for therapeutic interventions.
View Article and Find Full Text PDFSARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin.
View Article and Find Full Text PDFNematode virulence factors are of interest for a variety of applications including biocontrol against insect pests and the alleviation of autoimmune diseases with nematode-derived factors. In silico "omics" techniques have generated a wealth of candidate factors that may be important in the establishment of nematode infections, although the challenge of characterizing these individual factors in vivo remains. Here we provide a fundamental characterization of a putative lysozyme and serine carboxypeptidase from the host-induced transcriptome of Heterorhabditis bacteriophora.
View Article and Find Full Text PDFThe differentiation of distinct leukocyte subsets is governed by lineage-specific growth factors that elicit disparate expression of transcription factors and markers by the developing cell populations. For example, macrophages (Mφs) and granulocytes (Grns) arise from common granulocyte-macrophage progenitors in response to distinct myeloid growth factors. In turn, myelopoiesis of the Xenopus laevis anuran amphibian appears to be unique to other studied vertebrates in several respects while the functional differentiation of amphibian Mφs and Grns from their progenitor cells remains poorly understood.
View Article and Find Full Text PDFInsect pathogens have adopted an array of mechanisms to subvert the immune pathways of their respective hosts. Suppression may occur directly at the level of host-pathogen interactions, for instance phagocytic capacity or phenoloxidase activation, or at the upstream signaling pathways that regulate these immune effectors. Insect pathogens of the family Baculoviridae, for example, are known to produce a UDP-glycosyltransferase (UGT) that negatively regulates ecdysone signaling.
View Article and Find Full Text PDFAcross vertebrates, hematopoiesis takes place within designated tissues, wherein committed myeloid progenitors further differentiate toward cells with megakaryocyte/erythroid potential (MEP) or those with granulocyte/macrophage potential (GMP). While the liver periphery (LP) of the amphibian functions as a principal site of hematopoiesis and contains MEPs, cells with GMP potential are instead segregated to the bone marrow (BM) of this animal. Presently, using gene expression and western blot analyses of blood cell lineage-specific transcription factors, we confirmed that while the LP hosts hematopoietic stem cells and MEPs, their BM contains GMPs.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the leading global cause of death from an infectious agent. Mycobacteria thrive within their host Mϕs and presently, there is no animal model that permits combined in vitro and in vivo study of mycobacteria-host Mϕ interactions. Mycobacterium marinum (Mm), which causes TB in aquatic vertebrates, has become a promising model for TB research, owing to its close genetic relatedness to Mtb and the availability of alternative, natural host aquatic animal models.
View Article and Find Full Text PDFPathogens such as the Frog Virus 3 (FV3) ranavirus are contributing to the worldwide amphibian declines. While amphibian macrophages (Mϕs) are central to the immune defenses against these viruses, the pathogen recognition capacities of disparate amphibian Mϕ subsets remain unexplored. In turn, Mϕ differentiation and functionality are interdependent on the colony-stimulating factor-1 receptor (CSF-1R), which is ligated by colony-stimulating factor-1 (CSF-1) and the unrelated interleukin-34 (IL-34) cytokines.
View Article and Find Full Text PDFFrog virus 3 (FV3) is the type species of the genus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes.
View Article and Find Full Text PDFThe glutamic acid-leucine-arginine (ELR) motif is a hallmark feature shared by mammalian inflammatory CXC chemokines such the granulocyte chemo-attractant CXCL8 (interleukin-8, IL-8). By contrast, most teleost fish inflammatory chemokines lack this motif. Interestingly, the amphibian encodes multiple isoforms of CXCL8, one of which (CXCL8a) possesses an ELR motif, while another (CXCL8b) does not.
View Article and Find Full Text PDFThe X. laevis sub-capsular liver is thought to be the principal hematopoietic site of Xenopodinae species from early development and, in case of certain species, into adulthood. The Xenopus bone marrow appears to be comprised of precursor cells committed to myeloid lineages, such as macrophage- and granulocyte-progenitor cells.
View Article and Find Full Text PDFWhile amphibians around the globe are facing catastrophic declines, in part because of infections with pathogens such as the Frog Virus 3 (FV3) ranavirus; the mechanisms governing amphibian susceptibility and resistance to such pathogens remain poorly understood. The type I and type III interferon (IFN) cytokines represent a cornerstone of vertebrate antiviral immunity, while our recent work indicates that tadpoles and adult frogs of the amphibian may differ in their IFN responses to FV3. In this respect, it is notable that anuran (frogs and toads) tadpoles are significantly more susceptible to FV3 than adult frogs, and thus, gaining greater insight into the differences in the tadpole and adult frog antiviral immunity would be invaluable.
View Article and Find Full Text PDFOvercrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology.
View Article and Find Full Text PDFInfections by ranaviruses such as Frog virus 3 (Fv3), are significantly contributing to worldwide amphibian population declines. Notably, amphibian macrophages (Mφs) are important to both the Fv3 infection strategies and the immune defense against this pathogen. However, the mechanisms underlying amphibian Mφ Fv3 susceptibility and resistance remain unknown.
View Article and Find Full Text PDFInfections by Frog Virus 3 (FV3) and other ranaviruses (RVs) are contributing to the amphibian declines, while the mechanisms controlling anuran tadpole susceptibility and adult frog resistance to RVs, including the roles of polymorphonuclear granulocytes (PMNs) during anti-FV3 responses, remain largely unknown. Since amphibian kidneys represent an important FV3 target, the inability of amphibian (Xenopus laevis) tadpoles to mount effective kidney inflammatory responses to FV3 is thought to contribute to their susceptibility. Here we demonstrate that a recombinant X.
View Article and Find Full Text PDFInfections of amphibians by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to the amphibian declines, yet much remains unknown regarding amphibian antiviral immunity. Notably, amphibians represent an important step in the evolution of antiviral interferon (IFN) cytokines as they are amongst the first vertebrates to possess both type I and type III IFNs. Accordingly, we examined the roles of type I and III IFNs in the skin of FV3-challenged amphibian Xenopus laevis) tadpoles and adult frogs.
View Article and Find Full Text PDFMyeloid progenitors reside within specific hematopoietic organs and commit to progenitor lineages bearing megakaryocyte/erythrocyte (MEP) or granulocyte/macrophage potentials (GMP) within these sites. Unlike other vertebrates, the amphibian Xenopus laevis committed macrophage precursors are absent from the hematopoietic subcapsular liver and instead reside within their bone marrow. Presently, we demonstrate that while these frogs' liver-derived cells are unresponsive to recombinant forms of principal X.
View Article and Find Full Text PDF